Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Related tags

Deep LearningSLATER
Overview

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.org/abs/2105.08059)

Korkmaz, Y., Dar, S. U., Yurt, M., Ozbey, M., & Cukur, T. (2021). Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers. arXiv preprint arXiv:2105.08059.


Demo

The following commands are used to train and test SLATER to reconstruct undersampled MR acquisitions from single- and multi-coil datasets. You can download pretrained network snaphots and sample datasets from the links given below.

For training the MRI prior we use fully-sampled images, for testing undersampling is performed based on selected acceleration rate. We have used AdamOptimizer in training, RMSPropOptimizer with momentum parameter 0.9 in testing/inference. In the current settings AdamOptimizer is used, you can change underlying optimizer class in dnnlib/tflib/optimizer.py file. You can insert additional paramaters like momentum to the line 87 in the optimizer.py file.

Sample training command for multi-coil (fastMRI) dataset:

python run_network.py --train --gpus=0 --expname=fastmri_t1_train --dataset=fastmri-t1 --data-dir=datasets/multi-coil-datasets/train

Sample reconstruction/test command for fastMRI dataset:

python run_recon_multi_coil.py reconstruct-complex-images --network=pretrained_snapshots/fastmri-t1/network-snapshot-001282.pkl --dataset=fastmri-t1 --acc-rate=4 --contrast=t1 --data-dir=datasets/multi-coil-datasets/test

Sample training command for single-coil (IXI) dataset:

python run_network.py --train --gpus=0 --expname=ixi_t1_train --dataset=ixi_t1 --data-dir=datasets/single-coil-datasets/train

Sample reconstruction/test command for IXI dataset:

python run_recon_single_coil.py reconstruct-magnitude-images --network=pretrained_snapshots/ixi-t1/network-snapshot-001282.pkl --dataset=ixi_t1_test --acc-rate=4 --contrast=t1 --data-dir=datasets/single-coil-datasets/test

Datasets

For IXI dataset image dimensions are 256x256. For fastMRI dataset image dimensions vary with contrasts. (T1: 256x320, T2: 288x384, FLAIR: 256x320).

SLATER requires datasets in the tfrecords format. To create tfrecords file containing new datasets you can use dataset_tool.py:

To create single-coil datasets you need to give magnitude images to dataset_tool.py with create_from_images function by just giving image directory containing images in .png format. We included undersampling masks under datasets/single-coil-datasets/test.

To create multi-coil datasets you need to provide hdf5 files containing fully sampled coil-combined complex images in a variable named 'images_fs' with shape [num_of_images,x,y] (can be modified accordingly). To do this, you can use create_from_hdf5 function in dataset_tool.py.

The MRI priors are trained on coil-combined datasets that are saved in tfrecords files with a 3-channel order of [real, imaginary, dummy]. For test purposes, we included sample coil-sensitivity maps (complex variable with 4-dimensions [x,y,num_of_image,num_of_coils] named 'coil_maps') and undersampling masks (3-dimensions [x,y, num_of_image] named 'map') in the datasets/multi-coil-datasets/test folder in hdf5 format.

Coil-sensitivity-maps are estimated using ESPIRIT (http://people.eecs.berkeley.edu/~mlustig/Software.html). Network implementations use libraries from Gansformer (https://github.com/dorarad/gansformer) and Stylegan-2 (https://github.com/NVlabs/stylegan2) repositories.


Pretrained networks

You can download pretrained network snapshots and datasets from these links. You need to place downloaded folders (datasets and pretrained_snapshots folders) under the main repo to run those sample test commands given above.

Pretrained network snapshots for IXI-T1 and fastMRI-T1 can be downloaded from Google Drive: https://drive.google.com/drive/folders/1_69T1KUeSZCpKD3G37qgDyAilWynKhEc?usp=sharing

Sample training and test datasets for IXI-T1 and fastMRI-T1 can be downloaded from Google Drive: https://drive.google.com/drive/folders/1hLC8Pv7EzAH03tpHquDUuP-lLBasQ23Z?usp=sharing


Notice for training with multi-coil datasets

To train multi-coil (complex) datasets you need to remove/add some lines in training_loop.py:

  • Comment out line 8.
  • Delete comment at line 9.
  • Comment out line 23.

Citation

You are encouraged to modify/distribute this code. However, please acknowledge this code and cite the paper appropriately.

@article{korkmaz2021unsupervised,
  title={Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers},
  author={Korkmaz, Yilmaz and Dar, Salman UH and Yurt, Mahmut and {\"O}zbey, Muzaffer and {\c{C}}ukur, Tolga},
  journal={arXiv preprint arXiv:2105.08059},
  year={2021}
  }

(c) ICON Lab 2021


Prerequisites

  • Python 3.6 --
  • CuDNN 10.1 --
  • TensorFlow 1.14 or 1.15

Acknowledgements

This code uses libraries from the StyleGAN-2 (https://github.com/NVlabs/stylegan2) and Gansformer (https://github.com/dorarad/gansformer) repositories.

For questions/comments please send me an email: [email protected]


Owner
ICON Lab
ICON Lab
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022