Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Overview

Stochastic Deep Learning for Pytorch

Documentation Status

Documentation on Read the Docs. Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning [1]. Many state of the art deep learning models use gradient estimation, in particular within the fields of Variational Inference and Reinforcement Learning. While PyTorch computes gradients of deterministic computation graphs automatically, it will not estimate gradients on stochastic computation graphs [2].

With Storchastic, you can easily define any stochastic deep learning model and let it estimate the gradients for you. Storchastic provides a large range of gradient estimation methods that you can plug and play, to figure out which one works best for your problem. Storchastic provides automatic broadcasting of sampled batch dimensions, which increases code readability and allows implementing complex models with ease.

When dealing with continuous random variables and differentiable functions, the popular reparameterization method [3] is usually very effective. However, this method is not applicable when dealing with discrete random variables or non-differentiable functions. This is why Storchastic has a focus on gradient estimators for discrete random variables, non-differentiable functions and sequence models.

Documentation on Read the Docs.

Example: Discrete Variational Auto-Encoder

Installation

pip install storchastic

Requires Pytorch 1.5 (older versions will not do!) and Pyro. The code is build on Python 3.7. The master branch works with PyTorch 1.7, but the version on pip is not compatible. Binaries will be updated soon.

Algorithms

Feel free to create an issue if an estimator is missing here.

  • Reparameterization [1, 3]
  • Score Function (REINFORCE) with Moving Average baseline [1, 4]
  • Score Function with Batch Average Baseline [5, 6]
  • Expected value for enumerable distributions
  • (Straight through) Gumbel Softmax [7, 8]
  • LAX, RELAX [9]
  • REBAR [10]
  • REINFORCE Without Replacement [6]
  • Unordered Set Estimator [13]

In development

  • Memory Augmented Policy Optimization [11]
  • Rao-Blackwellized REINFORCE [12]

Planned

  • Measure valued derivatives [1, 14]
  • ARM [15]
  • Automatic Credit Assignment [16]
  • ...

References

Owner
Emile van Krieken
PhD AI student, into combining Knowledge Representation with Machine Learning.
Emile van Krieken
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022