Playable Video Generation

Overview

Playable Video Generation




Playable Video Generation
Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci

Paper: ArXiv
Supplementary: Website
Demo: Try it Live

Abstract: This paper introduces the unsupervised learning problem of playable video generation (PVG). In PVG, we aim at allowing a user to control the generated video by selecting a discrete action at every time step as when playing a video game. The difficulty of the task lies both in learning semantically consistent actions and in generating realistic videos conditioned on the user input. We propose a novel framework for PVG that is trained in a self-supervised manner on a large dataset of unlabelled videos. We employ an encoder-decoder architecture where the predicted action labels act as bottleneck. The network is constrained to learn a rich action space using, as main driving loss, a reconstruction loss on the generated video. We demonstrate the effectiveness of the proposed approach on several datasets with wide environment variety.

Overview



Figure 1. Illustration of the proposed CADDY model for playable video generation.


Given a set of completely unlabeled videos, we jointly learn a set of discrete actions and a video generation model conditioned on the learned actions. At test time, the user can control the generated video on-the-fly providing action labels as if he or she was playing a videogame. We name our method CADDY. Our architecture for unsupervised playable video generation is composed by several components. An encoder E extracts frame representations from the input sequence. A temporal model estimates the successive states using a recurrent dynamics network R and an action network A which predicts the action label corresponding to the current action performed in the input sequence. Finally, a decoder D reconstructs the input frames. The model is trained using reconstruction as the main driving loss.

Requirements

We recommend the use of Linux and of one or more CUDA compatible GPUs. We provide both a Conda environment and a Dockerfile to configure the required libraries.

Conda

The environment can be installed and activated with:

conda env create -f env.yml

conda activate video-generation

Docker

Use the Dockerfile to build the docker image:

docker build -t video-generation:1.0 .

Run the docker image mounting the root directory to /video-generation in the docker container:

docker run -it --gpus all --ipc=host -v /path/to/directory/video-generation:/video-generation video-generation:1.0 /bin/bash

Preparing Datasets

BAIR

Coming soon

Atari Breakout

Download the breakout_160_ours.tar.gz archive from Google Drive and extract it under the data folder.

Tennis

The Tennis dataset is automatically acquired from Youtube by running

./get_tennis_dataset.sh

This requires an installation of youtube-dl (Download). Please run youtube-dl -U to update the utility to the latest version. The dataset will be created at data/tennis_v4_256_ours.

Custom Datasets

Custom datasets can be created from a user-provided folder containing plain videos. Acquired video frames are sampled at the specified resolution and framerate. ffmpeg is used for the extraction and supports multiple input formats. By default only mp4 files are acquired.

python -m dataset.acquisition.convert_video_directory --video_directory --output_directory --target_size [--fps --video_extension --processes ]

As an example the following command transforms all mp4 videos in the tmp/my_videos directory into a 256x256px dataset sampled at 10fps and saves it in the data/my_videos folder python -m dataset.acquisition.convert_video_directory --video_directory tmp/my_videos --output_directory data/my_videos --target_size 256 256 --fps 10

Using Pretrained Models

Pretrained models in .pth.tar format are available for all the datasets and can be downloaded at the following link: Google Drive

Please place each directory under the checkpoints folder. Training and inference scripts automatically make use of the latest.pth.tar checkpoint when present in the checkpoints subfolder corresponding to the configuration in use.

Playing

When a latest.pth.tar checkpoint is present under the checkpoints folder corresponding to the current configuration, the model can be interactively used to generate videos with the following commands:

  • Bair: python play.py --config configs/01_bair.yaml

  • Breakout: python play.py configs/breakout/02_breakout.yaml

  • Tennis: python play.py --config configs/03_tennis.yaml

A full screen window will appear and actions can be provided using number keys in the range [1, actions_count]. Number key 0 resets the generation process.

The inference process is lightweight and can be executed even in browser as in our Live Demo.

Training

The models can be trained with the following commands:

python train.py --config configs/

The training process generates multiple files under the results and checkpoint directories a sub directory with the name corresponding to the one specified in the configuration file. In particular, the folder under the results directory will contain an images folder showing qualitative results obtained during training. The checkpoints subfolder will contain regularly saved checkpoints and the latest.pth.tar checkpoint representing the latest model parameters.

The training can be completely monitored through Weights and Biases by running before execution of the training command: wandb init

Training the model in full resolution on our datasets required the following GPU resources:

  • BAIR: 4x2080Ti 44GB
  • Breakout: 1x2080Ti 11GB
  • Tennis: 2x2080 16GB

Lower resolution versions of the model can be trained with a single 8GB GPU.

Evaluation

Evaluation requires two steps. First, an evaluation dataset must be built. Second, evaluation is carried out on the evaluation dataset. To build the evaluation dataset please issue:

python build_evaluation_dataset.py --config configs/

The command creates a reconstruction of the test portion of the dataset under the results//evaluation_dataset directory. To run evaluation issue:

python evaluate_dataset.py --config configs/evaluation/configs/

Evaluation results are saved under the evaluation_results directory the folder specified in the configuration file with the name data.yml.

Owner
Willi Menapace
Hi, I'm Willi Menapace, Ph.D Student and passionate deep learning practitioner. Here you can find some of the projects I am allowed to publish.
Willi Menapace
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022