Playable Video Generation

Overview

Playable Video Generation




Playable Video Generation
Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci

Paper: ArXiv
Supplementary: Website
Demo: Try it Live

Abstract: This paper introduces the unsupervised learning problem of playable video generation (PVG). In PVG, we aim at allowing a user to control the generated video by selecting a discrete action at every time step as when playing a video game. The difficulty of the task lies both in learning semantically consistent actions and in generating realistic videos conditioned on the user input. We propose a novel framework for PVG that is trained in a self-supervised manner on a large dataset of unlabelled videos. We employ an encoder-decoder architecture where the predicted action labels act as bottleneck. The network is constrained to learn a rich action space using, as main driving loss, a reconstruction loss on the generated video. We demonstrate the effectiveness of the proposed approach on several datasets with wide environment variety.

Overview



Figure 1. Illustration of the proposed CADDY model for playable video generation.


Given a set of completely unlabeled videos, we jointly learn a set of discrete actions and a video generation model conditioned on the learned actions. At test time, the user can control the generated video on-the-fly providing action labels as if he or she was playing a videogame. We name our method CADDY. Our architecture for unsupervised playable video generation is composed by several components. An encoder E extracts frame representations from the input sequence. A temporal model estimates the successive states using a recurrent dynamics network R and an action network A which predicts the action label corresponding to the current action performed in the input sequence. Finally, a decoder D reconstructs the input frames. The model is trained using reconstruction as the main driving loss.

Requirements

We recommend the use of Linux and of one or more CUDA compatible GPUs. We provide both a Conda environment and a Dockerfile to configure the required libraries.

Conda

The environment can be installed and activated with:

conda env create -f env.yml

conda activate video-generation

Docker

Use the Dockerfile to build the docker image:

docker build -t video-generation:1.0 .

Run the docker image mounting the root directory to /video-generation in the docker container:

docker run -it --gpus all --ipc=host -v /path/to/directory/video-generation:/video-generation video-generation:1.0 /bin/bash

Preparing Datasets

BAIR

Coming soon

Atari Breakout

Download the breakout_160_ours.tar.gz archive from Google Drive and extract it under the data folder.

Tennis

The Tennis dataset is automatically acquired from Youtube by running

./get_tennis_dataset.sh

This requires an installation of youtube-dl (Download). Please run youtube-dl -U to update the utility to the latest version. The dataset will be created at data/tennis_v4_256_ours.

Custom Datasets

Custom datasets can be created from a user-provided folder containing plain videos. Acquired video frames are sampled at the specified resolution and framerate. ffmpeg is used for the extraction and supports multiple input formats. By default only mp4 files are acquired.

python -m dataset.acquisition.convert_video_directory --video_directory --output_directory --target_size [--fps --video_extension --processes ]

As an example the following command transforms all mp4 videos in the tmp/my_videos directory into a 256x256px dataset sampled at 10fps and saves it in the data/my_videos folder python -m dataset.acquisition.convert_video_directory --video_directory tmp/my_videos --output_directory data/my_videos --target_size 256 256 --fps 10

Using Pretrained Models

Pretrained models in .pth.tar format are available for all the datasets and can be downloaded at the following link: Google Drive

Please place each directory under the checkpoints folder. Training and inference scripts automatically make use of the latest.pth.tar checkpoint when present in the checkpoints subfolder corresponding to the configuration in use.

Playing

When a latest.pth.tar checkpoint is present under the checkpoints folder corresponding to the current configuration, the model can be interactively used to generate videos with the following commands:

  • Bair: python play.py --config configs/01_bair.yaml

  • Breakout: python play.py configs/breakout/02_breakout.yaml

  • Tennis: python play.py --config configs/03_tennis.yaml

A full screen window will appear and actions can be provided using number keys in the range [1, actions_count]. Number key 0 resets the generation process.

The inference process is lightweight and can be executed even in browser as in our Live Demo.

Training

The models can be trained with the following commands:

python train.py --config configs/

The training process generates multiple files under the results and checkpoint directories a sub directory with the name corresponding to the one specified in the configuration file. In particular, the folder under the results directory will contain an images folder showing qualitative results obtained during training. The checkpoints subfolder will contain regularly saved checkpoints and the latest.pth.tar checkpoint representing the latest model parameters.

The training can be completely monitored through Weights and Biases by running before execution of the training command: wandb init

Training the model in full resolution on our datasets required the following GPU resources:

  • BAIR: 4x2080Ti 44GB
  • Breakout: 1x2080Ti 11GB
  • Tennis: 2x2080 16GB

Lower resolution versions of the model can be trained with a single 8GB GPU.

Evaluation

Evaluation requires two steps. First, an evaluation dataset must be built. Second, evaluation is carried out on the evaluation dataset. To build the evaluation dataset please issue:

python build_evaluation_dataset.py --config configs/

The command creates a reconstruction of the test portion of the dataset under the results//evaluation_dataset directory. To run evaluation issue:

python evaluate_dataset.py --config configs/evaluation/configs/

Evaluation results are saved under the evaluation_results directory the folder specified in the configuration file with the name data.yml.

Owner
Willi Menapace
Hi, I'm Willi Menapace, Ph.D Student and passionate deep learning practitioner. Here you can find some of the projects I am allowed to publish.
Willi Menapace
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022