Self Governing Neural Networks (SGNN): the Projection Layer

Overview

Self Governing Neural Networks (SGNN): the Projection Layer

A SGNN's word projections preprocessing pipeline in scikit-learn

In this notebook, we'll use T=80 random hashing projection functions, each of dimensionnality d=14, for a total of 1120 features per projected word in the projection function P.

Next, we'll need feedforward neural network (dense) layers on top of that (as in the paper) to re-encode the projection into something better. This is not done in the current notebook and is left to you to implement in your own neural network to train the dense layers jointly with a learning objective. The SGNN projection created hereby is therefore only a preprocessing on the text to project words into the hashing space, which becomes spase 1120-dimensional word features created dynamically hereby. Only the CountVectorizer needs to be fitted, as it is a char n-gram term frequency prior to the hasher. This one could be computed dynamically too without any fit, as it would be possible to use the power set of the possible n-grams as sparse indices computed on the fly as (indices, count_value) tuples, too.

import sklearn
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.random_projection import SparseRandomProjection
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.metrics.pairwise import cosine_similarity

from collections import Counter
from pprint import pprint

Preparing dummy data for demonstration:

SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH: # clip too long sentences. sub_phrase = phrase[:SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH].lstrip() splitted_string.append(sub_phrase) phrase = phrase[SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH:].rstrip() if len(phrase) >= SentenceTokenizer.MINIMUM_SENTENCE_LENGTH: splitted_string.append(phrase) return splitted_string with open("./data/How-to-Grow-Neat-Software-Architecture-out-of-Jupyter-Notebooks.md") as f: raw_data = f.read() test_str_tokenized = SentenceTokenizer().fit_transform(raw_data) # Print text example: print(len(test_str_tokenized)) pprint(test_str_tokenized[3:9])">
class SentenceTokenizer(BaseEstimator, TransformerMixin):
    # char lengths:
    MINIMUM_SENTENCE_LENGTH = 10
    MAXIMUM_SENTENCE_LENGTH = 200
    
    def fit(self, X, y=None):
        return self
    
    def transform(self, X):
        return self._split(X)
    
    def _split(self, string_):
        splitted_string = []
        
        sep = chr(29)  # special separator character to split sentences or phrases.
        string_ = string_.strip().replace(".", "." + sep).replace("?", "?" + sep).replace("!", "!" + sep).replace(";", ";" + sep).replace("\n", "\n" + sep)
        for phrase in string_.split(sep):
            phrase = phrase.strip()
            
            while len(phrase) > SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH:
                # clip too long sentences.
                sub_phrase = phrase[:SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH].lstrip()
                splitted_string.append(sub_phrase)
                phrase = phrase[SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH:].rstrip()
            
            if len(phrase) >= SentenceTokenizer.MINIMUM_SENTENCE_LENGTH:
                splitted_string.append(phrase)

        return splitted_string


with open("./data/How-to-Grow-Neat-Software-Architecture-out-of-Jupyter-Notebooks.md") as f:
    raw_data = f.read()

test_str_tokenized = SentenceTokenizer().fit_transform(raw_data)

# Print text example:
print(len(test_str_tokenized))
pprint(test_str_tokenized[3:9])
168
["Have you ever been in the situation where you've got Jupyter notebooks "
 '(iPython notebooks) so huge that you were feeling stuck in your code?',
 'Or even worse: have you ever found yourself duplicating your notebook to do '
 'changes, and then ending up with lots of badly named notebooks?',
 "Well, we've all been here if using notebooks long enough.",
 'So how should we code with notebooks?',
 "First, let's see why we need to be careful with notebooks.",
 "Then, let's see how to do TDD inside notebook cells and how to grow a neat "
 'software architecture out of your notebooks.']

Creating a SGNN preprocessing pipeline's classes

<" end_of_word = ">" out = [ [ begin_of_word + word + end_of_word for word in sentence.replace("//", " /").replace("/", " /").replace("-", " -").replace(" ", " ").split(" ") if not len(word) == 0 ] for sentence in X ] return out ">
class WordTokenizer(BaseEstimator, TransformerMixin):
    
    def fit(self, X, y=None):
        return self
    
    def transform(self, X):
        begin_of_word = "<"
        end_of_word = ">"
        out = [
            [
                begin_of_word + word + end_of_word
                for word in sentence.replace("//", " /").replace("/", " /").replace("-", " -").replace("  ", " ").split(" ")
                if not len(word) == 0
            ]
            for sentence in X
        ]
        return out
char_ngram_range = (1, 4)

char_term_frequency_params = {
    'char_term_frequency__analyzer': 'char',
    'char_term_frequency__lowercase': False,
    'char_term_frequency__ngram_range': char_ngram_range,
    'char_term_frequency__strip_accents': None,
    'char_term_frequency__min_df': 2,
    'char_term_frequency__max_df': 0.99,
    'char_term_frequency__max_features': int(1e7),
}

class CountVectorizer3D(CountVectorizer):

    def fit(self, X, y=None):
        X_flattened_2D = sum(X.copy(), [])
        super(CountVectorizer3D, self).fit_transform(X_flattened_2D, y)  # can't simply call "fit"
        return self

    def transform(self, X):
        return [
            super(CountVectorizer3D, self).transform(x_2D)
            for x_2D in X
        ]
    
    def fit_transform(self, X, y=None):
        return self.fit(X, y).transform(X)
import scipy.sparse as sp

T = 80
d = 14

hashing_feature_union_params = {
    # T=80 projections for each of dimension d=14: 80 * 14 = 1120-dimensionnal word projections.
    **{'union__sparse_random_projection_hasher_{}__n_components'.format(t): d
       for t in range(T)
    },
    **{'union__sparse_random_projection_hasher_{}__dense_output'.format(t): False  # only AFTER hashing.
       for t in range(T)
    }
}

class FeatureUnion3D(FeatureUnion):
    
    def fit(self, X, y=None):
        X_flattened_2D = sp.vstack(X, format='csr')
        super(FeatureUnion3D, self).fit(X_flattened_2D, y)
        return self
    
    def transform(self, X): 
        return [
            super(FeatureUnion3D, self).transform(x_2D)
            for x_2D in X
        ]
    
    def fit_transform(self, X, y=None):
        return self.fit(X, y).transform(X)

Fitting the pipeline

Note: at fit time, the only thing done is to discard some unused char n-grams and to instanciate the random hash, the whole thing could be independent of the data, but here because of discarding the n-grams, we need to "fit" the data. Therefore, fitting could be avoided all along, but we fit here for simplicity of implementation using scikit-learn.

params = dict()
params.update(char_term_frequency_params)
params.update(hashing_feature_union_params)

pipeline = Pipeline([
    ("word_tokenizer", WordTokenizer()),
    ("char_term_frequency", CountVectorizer3D()),
    ('union', FeatureUnion3D([
        ('sparse_random_projection_hasher_{}'.format(t), SparseRandomProjection())
        for t in range(T)
    ]))
])
pipeline.set_params(**params)

result = pipeline.fit_transform(test_str_tokenized)

print(len(result), len(test_str_tokenized))
print(result[0].shape)
168 168
(12, 1120)

Let's see the output and its form.

print(result[0].toarray().shape)
print(result[0].toarray()[0].tolist())
print("")

# The whole thing is quite discrete:
print(set(result[0].toarray()[0].tolist()))

# We see that we could optimize by using integers here instead of floats by counting the occurence of every entry.
print(Counter(result[0].toarray()[0].tolist()))
(12, 1120)
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 2.005715251142432, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

{0.0, 2.005715251142432, -2.005715251142432}
Counter({0.0: 1069, -2.005715251142432: 27, 2.005715251142432: 24})

Checking that the cosine similarity before and after word projection is kept

Note that this is a yet low-quality test, as the neural network layers above the projection are absent, so the similary is not yet semantic, it only looks at characters.

0.5 else "no") print("\t - similarity after :", cos_sim_after , "\t Are words similar?", "yes" if cos_sim_after > 0.5 else "no") print("")">
word_pairs_to_check_against_each_other = [
    # Similar:
    ["start", "started"],
    ["prioritize", "priority"],
    ["twitter", "tweet"],
    ["Great", "great"],
    # Dissimilar:
    ["boat", "cow"],
    ["orange", "chewbacca"],
    ["twitter", "coffee"],
    ["ab", "ae"],
]

before = pipeline.named_steps["char_term_frequency"].transform(word_pairs_to_check_against_each_other)
after = pipeline.named_steps["union"].transform(before)

for i, word_pair in enumerate(word_pairs_to_check_against_each_other):
    cos_sim_before = cosine_similarity(before[i][0], before[i][1])[0,0]
    cos_sim_after  = cosine_similarity( after[i][0],  after[i][1])[0,0]
    print("Word pair tested:", word_pair)
    print("\t - similarity before:", cos_sim_before, 
          "\t Are words similar?", "yes" if cos_sim_before > 0.5 else "no")
    print("\t - similarity after :", cos_sim_after , 
          "\t Are words similar?", "yes" if cos_sim_after  > 0.5 else "no")
    print("")
Word pair tested: ['start', 'started']
	 - similarity before: 0.8728715609439697 	 Are words similar? yes
	 - similarity after : 0.8542062410985866 	 Are words similar? yes

Word pair tested: ['prioritize', 'priority']
	 - similarity before: 0.8458888522202895 	 Are words similar? yes
	 - similarity after : 0.8495862181305898 	 Are words similar? yes

Word pair tested: ['twitter', 'tweet']
	 - similarity before: 0.5439282932204212 	 Are words similar? yes
	 - similarity after : 0.4826046482460216 	 Are words similar? no

Word pair tested: ['Great', 'great']
	 - similarity before: 0.8006407690254358 	 Are words similar? yes
	 - similarity after : 0.8175049752615363 	 Are words similar? yes

Word pair tested: ['boat', 'cow']
	 - similarity before: 0.1690308509457033 	 Are words similar? no
	 - similarity after : 0.10236537810666581 	 Are words similar? no

Word pair tested: ['orange', 'chewbacca']
	 - similarity before: 0.14907119849998599 	 Are words similar? no
	 - similarity after : 0.2019908169580899 	 Are words similar? no

Word pair tested: ['twitter', 'coffee']
	 - similarity before: 0.09513029883089882 	 Are words similar? no
	 - similarity after : 0.1016460166230715 	 Are words similar? no

Word pair tested: ['ab', 'ae']
	 - similarity before: 0.408248290463863 	 Are words similar? no
	 - similarity after : 0.42850530886130067 	 Are words similar? no

Next up

So we have created the sentence preprocessing pipeline and the sparse projection (random hashing) function. We now need a few feedforward layers on top of that.

Also, a few things could be optimized, such as using the power set of the possible n-gram values with a predefined character set instead of fitting it, and the Hashing's fit function could be avoided as well by passing the random seed earlier, because the Hasher doesn't even look at the data and it only needs to be created at some point. This would yield a truly embedding-free approach. Free to you to implement this. I wanted to have something that worked first, leaving optimization for later.

License

BSD 3-Clause License

Copyright (c) 2018, Guillaume Chevalier

All rights reserved.

Extra links

Connect with me

Liked this piece of code? Did it help you? Leave a star, fork and share the love!

Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022