Ganilla - Official Pytorch implementation of GANILLA

Overview

GANILLA

We provide PyTorch implementation for:

GANILLA: Generative Adversarial Networks for Image to Illustration Translation.

Paper Arxiv

Updates

Dataset Stats:

Ill stats

Sample Images:

Ill images

GANILLA:

GANILLA results on the illustration dataset:

GANILLA results

Comparison with other methods:

comparison

Style transfer using Miyazaki's anime images:

GANILLA miyazaki

Ablation Experiments:

GANILLA ablation

Prerequisites

  • Linux, macOS or Windows
  • Python 2 or 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Downloading Datasets

Please refer to datasets.md for details.

Installation

  • Clone this repo:
git clone https://github.com/giddyyupp/ganilla.git
cd ganilla
pip install -r requirements.txt
  • For Conda users, we include a script ./scripts/conda_deps.sh to install PyTorch and other libraries.

GANILLA train/test

  • Download a GANILLA/CycleGAN dataset (e.g. maps):
bash ./datasets/download_cyclegan_dataset.sh maps
  • Train a model:
#!./scripts/train_ganilla.sh
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan --netG resnet_fpn
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097. To see more intermediate results, check out ./checkpoints/maps_cyclegan/web/index.html
  • Test the model:
#!./scripts/test_cyclegan.sh
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan --netG resnet_fpn

The test results will be saved to a html file here: ./results/maps_cyclegan/latest_test/index.html.

You can find more scripts at scripts directory.

Apply a pre-trained model (GANILLA)

  • You can download pretrained models using following link

Put a pretrained model under ./checkpoints/{name}_pretrained/100_net_G.pth.

  • To test the model, you also need to download the monet2photo dataset and use trainB images as source:
bash ./datasets/download_cyclegan_dataset.sh monet2photo
  • Then generate the results using
python test.py --dataroot datasets/monet2photo/testB --name {name}_pretrained --model test

The option --model test is used for generating results of GANILLA only for one side. python test.py --model cycle_gan will require loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.

  • If you would like to apply a pre-trained model to a collection of input images (rather than image pairs), please use --dataset_mode single and --model test options. Here is a script to apply a model to Facade label maps (stored in the directory facades/testB).
#!./scripts/test_single.sh
python test.py --dataroot ./datasets/monet2photo/testB/ --name {your_trained_model_name} --model test

You might want to specify --netG to match the generator architecture of the trained model.

Style & Content CNN

We shared style & content CNNs in this repo. It contains train/test procedure as well as pretrained weights for both cnns.

Training/Test Tips

Best practice for training and testing your models.

Frequently Asked Questions

Before you post a new question, please first look at the above Q & A and existing GitHub issues.

Citation

If you use this code for your research, please cite our papers.

@article{hicsonmez2020ganilla,
  title={GANILLA: Generative adversarial networks for image to illustration translation},
  author={Hicsonmez, Samet and Samet, Nermin and Akbas, Emre and Duygulu, Pinar},
  journal={Image and Vision Computing},
  pages={103886},
  year={2020},
  publisher={Elsevier}
}

@inproceedings{Hicsonmez:2017:DDN:3078971.3078982,
 author = {Hicsonmez, Samet and Samet, Nermin and Sener, Fadime and Duygulu, Pinar},
 title = {DRAW: Deep Networks for Recognizing Styles of Artists Who Illustrate Children's Books},
 booktitle = {Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval},
 year = {2017}
}

Acknowledgments

Our code is heavily inspired by CycleGAN.

The numerical calculations reported in this work were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Owner
Samet Hi
Hacettepe University
Samet Hi
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022