pytorch implementation of fast-neural-style

Overview

fast-neural-style 🌇 🚀

NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/examples/fast_neural_style.

This repository contains a pytorch implementation of an algorithm for artistic style transfer. The algorithm can be used to mix the content of an image with the style of another image. For example, here is a photograph of a door arch rendered in the style of a stained glass painting.

The model uses the method described in Perceptual Losses for Real-Time Style Transfer and Super-Resolution along with Instance Normalization. The saved-models for examples shown in the README can be downloaded from here.

DISCLAIMER: This implementation is also a part of the pytorch examples repository. Implementation in this repository uses pretrained Caffe2 VGG whereas the pytorch examples repository implementation uses pretrained Pytorch VGG. The two VGGs have different preprocessings which results in different --content-weight and --style-weight parameters. The styled output images also look slightly different.

Requirements

The program is written in Python, and uses pytorch, scipy. A GPU is not necessary, but can provide a significant speed up especially for training a new model. Regular sized images can be styled on a laptop, desktop using saved models.

Setup the environnment

Run with virtualenv

Create a virtualenv with python3.5 or python3.6. Older versions are not supported due to a lack of compatibilty with pytorch.

python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

Run with Docker

Build the image:

docker build . -t fast-neural-style

Run the container:

docker run --rm --volume "$(pwd)/:/data" style eval --content-image /data/image.jpg --model /app/saved-models/mosaic.pth --output-image /data/output.jpg --cuda 0

Usage

Stylize image

python neural_style/neural_style.py eval --content-image </path/to/content/image> --model </path/to/saved/model> --output-image </path/to/output/image> --cuda 0
  • --content-image: path to content image you want to stylize.
  • --model: saved model to be used for stylizing the image (eg: mosaic.pth)
  • --output-image: path for saving the output image.
  • --content-scale: factor for scaling down the content image if memory is an issue (eg: value of 2 will halve the height and width of content-image)
  • --cuda: set it to 1 for running on GPU, 0 for CPU.

Train model

python neural_style/neural_style.py train --dataset </path/to/train-dataset> --style-image </path/to/style/image> --vgg-model-dir </path/to/vgg/folder> --save-model-dir </path/to/save-model/folder> --epochs 2 --cuda 1

There are several command line arguments, the important ones are listed below

  • --dataset: path to training dataset, the path should point to a folder containing another folder with all the training images. I used COCO 2014 Training images dataset [80K/13GB] (download).
  • --style-image: path to style-image.
  • --vgg-model-dir: path to folder where the vgg model will be downloaded.
  • --save-model-dir: path to folder where trained model will be saved.
  • --cuda: set it to 1 for running on GPU, 0 for CPU.

Refer to neural_style/neural_style.py for other command line arguments.

Models

Models for the examples shown below can be downloaded from here or by running the script download_styling_models.sh.


Owner
Abhishek Kadian
Engineer @facebookresearch
Abhishek Kadian
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023