Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Overview

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm

Overview

Multi-band Spectro Radiomertric images are images comprising of several channels / bands which hold information on band energy in each pixel.
The most common multi band channels are the RGB (Red Green Blue) channels of the visible light spectrum.

The images used are LANDSAT 8 satellite images and each image consist of three bands, namely: Thermal Infrared, Red and Near infrared bands corresponding to band 10, band 4 and band 5 of LANDSAT 8 satellite imagery with wavelengths of 10.895µm, 0.655µm and 0.865µm respectively.

Each pixel in each bands of each image are used to compute three features namely: NDVI (Normalized Differential Vegetative Index), PV (Portion of Vegetation) and LST (Land Surface Temperature).

The K-means cluster algorithm is initialized and the "number of clusters" hyper-parameter is set to 60. The algorithm is then trained on the extracted features and forms 60 different clusters represented by each of the 60 centroids.

These centroids are stored in the "ouput" folder and will be futher studied to learn what NDVI, PV and LST combinations a geograhical location might need to have for the occurence and spread of wild fire to be highly probable.



Features

NDVI (Normalized Differential Vegetative Index):

The Normalized Differential Vegetative Index is a metric for checking the presence and health of a vegetation in a given region.
It is basically how much RED light energy from the visible light spectrum is absorbed by the plant and how much NIR (near-infrared rays) it emmits.
Healthy vegetation absorbs red-light energy to fuel photosynthesis and create chlorophyll, and a plant with more chlorophyll will reflect more near-infrared energy than an unhealthy plant.
The NDVI ranges from -1 to 1, -1 corresponds to a very unhealthy plant and 1 corresponds to a very healthy plant.

The mathematical expression for NDVI is:
NDVI = (NIR - RED) / (NIR + RED)


PV (Portion of Vegetation):

Portion of Vegetation is the ratio of the vertical projection area of vegetation on the ground to the total vegetation area

The mathematical expression for PV is:
PV = (NDVI - NDVImin) / (NDVImin + NDVImax)
NDVImin is the minimum NDVI value a pixel holds in a single image
NDVImin is the maximum NDVI value a pixel holds in a single image


LST (Land Surface Temperature):

Land Surface Temperature is the radiative temperature / intensity of the land surface

The mathematical expression for LST is:
LST = BT / ( 1 + ( ( kn * BT / p ) * np.log(E) ) )

BT is brighness Temperature in celcius and is mathematically expressed as:
BT = (K2 / np.log( ( K1 / TOA ) + 1 )) - 273.15
where K1 and K2 are landsat 8 constants 774.8853 and 1321.0789 respectively

TOA (Top of Atmosphere) Reflectance is a unitless measurement which provides the ratio of radiation reflected to the incident solar radiation on a given surface.
It is mathematically expressed as:
TOA = ML * TIR + Al
where ML and Al are landsat 8 constants 3.42E-4 and 0.1 respectively.

p is mathematically expressed as:
p = hc/A
where h, c and a are plank's constant, speed of light and boltzmann constant respectively

E is emissivity of the land surface and is mathematically expressed as:
( Ev * PV * Rv ) + ( Es * ( 1 - PV ) * Rs ) + C
where:
Ev (Vegitation Emissivity) of location = 0.986
Es (Soil Emissivity) of location = 0.973
C (topography factor) of location = 0.0001
Rv =(0.92762 + (0.07033PV))
Rs=(0.99782 + (0.05362
PV))



Dependencies

  • Rasterio
  • Numpy
  • Pandas
  • Sklearn
  • Pickle


Setup

clone the repository and download the 'requirement.txt' files, then open terminal in the working directory and type 'pip install -r requirements.txt' to install all the requirements for this project.
Owner
Chibueze Henry
A machine learning enthusiast and developer as well as a full-stack web developer
Chibueze Henry
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022