LEAP: Learning Articulated Occupancy of People

Related tags

Deep Learningleap
Overview

LEAP: Learning Articulated Occupancy of People

Paper | Video | Project Page

teaser figure

This is the official implementation of the CVPR 2021 submission LEAP: Learning Articulated Occupancy of People

LEAP is a neural network architecture for representing volumetric animatable human bodies. It follows traditional human body modeling techniques and leverages a statistical human prior to generalize to unseen humans.

If you find our code or paper useful, please consider citing:

@InProceedings{LEAP:CVPR:21,
  title = {{LEAP}: Learning Articulated Occupancy of People},
  author = {Mihajlovic, Marko and Zhang, Yan and Black, Michael J and Tang, Siyu},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2021},
}

Contact Marko Mihajlovic for questions or open an issue / a pull request.

Prerequests

1) SMPL body model

Download a SMPL body model (SMPL, SMPL+H, SMPL+X, MANO) and store it under ${BODY_MODELS} directory of the following structure:

${BODY_MODELS}
├── smpl
│   └── x
├── smplh
│   ├── male
|   │   └── model.npz
│   ├── female
|   │   └── model.npz
│   └── neutral
|       └── model.npz
├── mano
|   └── x
└── smplx
    └── x

NOTE: currently only SMPL+H model is supported. Other models will be available soon.

2) Installation

Another prerequest is to install python packages specified in the requirements.txt file, which can be conveniently accomplished by using an Anaconda environment:

# clone the repo
git clone https://github.com/neuralbodies/leap.git
cd ./leap

# create environment
conda env create -f environment.yml
conda activate leap

and install the leap package via pip:

# note: install the build-essentials package if not already installed (`sudo apt install build-essential`) 
python setup.py build_ext --inplace
pip install -e .

3) (Optional) Download LEAP pretrained models

Download LEAP pretrained models from here and extract them under ${LEAP_MODELS} directory.

Usage

Check demo code in examples/query_leap.py for a demonstration on how to use LEAP for differentiable occupancy checks.

Train your own model

Follow instructions specified in data_preparation/README.md on how to prepare training data. Then, replace placeholders for pre-defined path variables in configuration files (configurations/*.yml) and execute training_code/train_leap.py script to train the neural network modules.

LEAP consists of two LBS networks and one occupancy decoder.

cd training_code

To train the forward LBS network, execute the following command:

python train_leap.py ../configurations/fwd_lbs.yml

To train the inverse LBS network:

python train_leap.py ../configurations/inv_lbs.yml

Once the LBS networks are trained, execute the following command to train the occupancy network:

python train_leap.py ../configurations/leap_model.yml

See specified yml configuration files for details about network hyperparameters.

Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022