An all-in-one application to visualize multiple different local path planning algorithms

Overview

Table of Contents

Local Planner Visualization Project (LPVP)

LPVP serves to provide a single application to visualize numerous different local planner algorithms used in Autonomous Vehicle path planning and mobile robotics. The application provides customizable parameters to better understand the inner workings of each algorithm and explore their strengths and drawbacks. It is written in Python and uses Pygame to render the visualizations.

App Preview

Features

  • Multiple Local Planner Algorithms
    • Probabilistic Roadmap
    • RRT
    • Potential Field
  • Multiple Graph Search Algorithms
    • Dijkstra's Shortest Path
    • A* Search
    • Greedy Best First Search
  • Graph Search visualization
  • Random obstacle generation with customizable obstacle count
  • Drag and drop obstacle generation
  • Drag and drop customizable start/end pose
  • Customizable Parameters for each planner algorithm
    • Probabilistic Roadmap
      • Sample Size
      • K-Neighbours
      • Graph Search algorithm
    • RRT
      • Path goal bias
    • Potential Field
      • Virtual Field toggle
  • Support for additional planner and search algorithms

Installation/Usage

The project is written in Python3, and uses pygame to handle the visualizations and pygame_gui for the gui. numpy is used for calculations for the potential field planner.

  1. Clone the repo
git clone https://github.com/abdurj/Local-Planner-Visualization-Project.git
  1. Install Dependencies
  pip3 install pygame pygame_gui numpy
  cd Local-Planner-Visualization-Project
  1. Run the program
python3 base.py

Local Planners

Probabilistic Roadmap (PRM)

The probabilistic roadmap planner is a sampling based planner that operates in 3 stages, and searches a constructed graph network to find the path between the start and end configuration. This approach is heavy on pre-processing, as it needs to generate the network, however after the preprocessing is done, it can quickly search the constructed network for any start and goal pose configuration without needing to restart. The PRM excels in solving motion planning problems in high dimensional C-Spaces, for example: a robot with many joints. However this project demonstrates a PRM acting in a 2D C-Space.

1. Sampling Stage

During the sampling stage the planner generates N samples from the free C-Space. In this project, the samples are generated by uniformly sampling the C-Space, and if the sample does not collide with any object, it is added as a Node in the roadmap. The PRM isn't limited to uniform sampling techniques, non-uniform sampling techniques can be used to better model the C-Space.

Non-uniform sampling methods are planned for a future release

App Preview

2. Creating the roadmap

In the next stage, the planner finds the K closest neighbours for each node. It then uses a simple local path planner to connect the node with it's neighbour nodes without trying to avoid any obstacles. This is done by simply creating a straight line between the nodes. If this line is collision free; an edge is created between the nodes.

App Preview

3. Searching the Roadmap

After connecting all nodes with its K closest neighbours, a resulting graph network will have been created. This network can be searched with a graph search algorithm. The currently supported graph search algorithms are:

  • Dijkstra's Shortest Path
  • A* Search
  • Greedy Best First Search

More search algorithms are planned for a future release.

App Preview

Rapidly-exploring Random Tree (RRT)

The rapidly-exploring random tree planner is another sampling based planner that explores the C-space by growing a tree rooted at the starting configuration. It then randomly samples the free c-space, and attempts to connect the random sample with the nearest node in the tree. The length of the connection is limited by a growth factor, or "step size". In path planning problems, a bias factor is introduced into the RRT. This bias factor introduces a probability that the random sample will be the goal pose. Increasing the bias factor affects how greedily the tree expands towards the goal. RRT

Potential Field

The potential field planner is adapted from the concept of a charged particle travelling through a charged magnetic field. The goal pose emits a strong attractive force, and the obstacles emit a repulsive force. We can emulate this behaviour by creating a artificial potential field that attracts the robot towards the goal. The goal pose emits a strong attractive field, and each obstacle emits a repulsive field. By following the sum of all fields at each position, we can construct a path towards the goal pose. PF Demo

Virtual Fields

A problem with the potential field planner is that it is easy for the planner to get stuck in local minima traps. Thus the Virtual Field method proposed by Ding Fu-guang et al. in this paper has been implemented to steer the path towards the open free space in the instance where the path is stuck. Virtual Field

Grid Based Planner

Grid based planners model the free C-Space as a grid. From there a graph search algorithm is used to search the graph for a path from the start and end pose.

A grid based planner is planned for a future release.

Current Issues

  • Updating starting configuration in PRM doesn't clear search visualization
  • Virtual Field pushes path into obstacles in certain scenarios

Contributing

Contributions are always welcome!

See contributing.md for ways to get started.

Roadmap

  • Add Grid Based Local Planner
  • Add variable growth factor to RRT planner
  • Add new local planners: RRT* / D* / Voronoi Roadmap
  • Add dynamic trajectory generation visualization as shown in this video

Authors

Project Setup / Algorithm Implementations

Styling / UI / Design

Acknowledgements

PRM

  • Becker, A. (2020, November 23). PRM: Probabilistic Roadmap Method in 3D and with 7-DOF robot arm. YouTube
  • Modern Robotics, Chapter 10.5: Sampling Methods for Motion Planning (Part 1 of 2). (2018, March 16). YouTube

RRT

  • Algobotics: Python RRT Path Planning playlist. Youtube
  • RRT, RRT* & Random Trees. (2018, November 21). YouTube

Potential Field

  • Ding Fu-guang, Jiao Peng, Bian Xin-qian and Wang Hong-jian, "AUV local path planning based on virtual potential field," IEEE International Conference Mechatronics and Automation, 2005, 2005, pp. 1711-1716 Vol. 4, doi: 10.1109/ICMA.2005.1626816. URL
  • Michael A. Goodrich, Potential Fields Tutorial URL
  • Safadi, H. (2007, April 18). Local Path Planning Using Virtual Potential Field. URL
  • Lehett, J, Pytential Fields Github Repo

License

This project is licensed under the terms of the MIT license.

You might also like...
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Simple streamlit app to demonstrate HERE Tour Planning
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Related resources for our EMNLP 2021 paper Plan-then-Generate: Controlled Data-to-Text Generation via Planning

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

 GNPy: Optical Route Planning and DWDM Network Optimization
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Releases(v1.0)
  • v1.0(Jul 26, 2021)

    Initial release of the LPVP project. Adds 3 Local Planner Algorithms: Probabilistic Roadmap, RRT, Potential Field Adds 3 Graph Search algorithms: Dijkstra's, A*, Greedy BFS

    Source code(tar.gz)
    Source code(zip)
Owner
Abdur Javaid
UW Software Engineering 2025
Abdur Javaid
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022