git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

Related tags

Deep LearningFSCE
Overview

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021)

Language grade: Python This repo contains the implementation of our state-of-the-art fewshot object detector, described in our CVPR 2021 paper, FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding. FSCE is built upon the codebase FsDet v0.1, which released by an ICML 2020 paper Frustratingly Simple Few-Shot Object Detection.

FSCE Figure

Bibtex

@inproceedings{FSCEv1,
 author = {Sun, Bo and Li, Banghuai and Cai, Shengcai and Yuan, Ye and Zhang, Chi},
 title = {FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding},
 booktitle = {Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)},
 pages    = {TBD},
 month = {June},
 year = {2021}
}

Arxiv: https://arxiv.org/abs/2103.05950

Contact

If you have any questions, please contact Bo Sun (bos [at] usc.edu) or Banghuai Li(libanghuai [at] megvii.com)

Installation

FsDet is built on Detectron2. But you don't need to build detectron2 seperately as this codebase is self-contained. You can follow the instructions below to install the dependencies and build FsDet. FSCE functionalities are implemented as classand .py scripts in FsDet which therefore requires no extra build efforts.

Dependencies

  • Linux with Python >= 3.6
  • PyTorch >= 1.3
  • torchvision that matches the PyTorch installation
  • Dependencies: pip install -r requirements.txt
  • pycocotools: pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • OpenCV, optional, needed by demo and visualization pip install opencv-python
  • GCC >= 4.9

Build

python setup.py build develop  # you might need sudo

Note: you may need to rebuild FsDet after reinstalling a different build of PyTorch.

Data preparation

We adopt the same benchmarks as in FsDet, including three datasets: PASCAL VOC, COCO and LVIS.

  • PASCAL VOC: We use the train/val sets of PASCAL VOC 2007+2012 for training and the test set of PASCAL VOC 2007 for evaluation. We randomly split the 20 object classes into 15 base classes and 5 novel classes, and we consider 3 random splits. The splits can be found in fsdet/data/datasets/builtin_meta.py.
  • COCO: We use COCO 2014 without COCO minival for training and the 5,000 images in COCO minival for testing. We use the 20 object classes that are the same with PASCAL VOC as novel classes and use the rest as base classes.
  • LVIS: We treat the frequent and common classes as the base classes and the rare categories as the novel classes.

The datasets and data splits are built-in, simply make sure the directory structure agrees with datasets/README.md to launch the program.

Code Structure

The code structure follows Detectron2 v0.1.* and fsdet.

  • configs: Configuration files (YAML) for train/test jobs.
  • datasets: Dataset files (see Data Preparation for more details)
  • fsdet
    • checkpoint: Checkpoint code.
    • config: Configuration code and default configurations.
    • data: Dataset code.
    • engine: Contains training and evaluation loops and hooks.
    • evaluation: Evaluation code for different datasets.
    • layers: Implementations of different layers used in models.
    • modeling: Code for models, including backbones, proposal networks, and prediction heads.
      • The majority of FSCE functionality are implemtended inmodeling/roi_heads/* , modeling/contrastive_loss.py, and modeling/utils.py
      • So one can first make sure FsDet v0.1 runs smoothly, and then refer to FSCE implementations and configurations.
    • solver: Scheduler and optimizer code.
    • structures: Data types, such as bounding boxes and image lists.
    • utils: Utility functions.
  • tools
    • train_net.py: Training script.
    • test_net.py: Testing script.
    • ckpt_surgery.py: Surgery on checkpoints.
    • run_experiments.py: Running experiments across many seeds.
    • aggregate_seeds.py: Aggregating results from many seeds.

Train & Inference

Training

We follow the eaact training procedure of FsDet and we use random initialization for novel weights. For a full description of training procedure, see here.

1. Stage 1: Training base detector.

python tools/train_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/base-training/R101_FPN_base_training_split1.yml

2. Random initialize weights for novel classes.

python tools/ckpt_surgery.py \
        --src1 checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_base1/model_final.pth \
        --method randinit \
        --save-dir checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_all1

This step will create a model_surgery.pth from model_final.pth.

Don't forget the --coco and --lvisoptions when work on the COCO and LVIS datasets, see ckpt_surgery.py for all arguments details.

3. Stage 2: Fine-tune for novel data.

python tools/train_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml \
        --opts MODEL.WEIGHTS WEIGHTS_PATH

Where WEIGHTS_PATH points to the model_surgery.pth generated from the previous step. Or you can specify it in the configuration yml.

Evaluation

To evaluate the trained models, run

python tools/test_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml \
        --eval-only

Or you can specify TEST.EVAL_PERIOD in the configuation yml to evaluate during training.

Multiple Runs

For ease of training and evaluation over multiple runs, fsdet provided several helpful scripts in tools/.

You can use tools/run_experiments.py to do the training and evaluation. For example, to experiment on 30 seeds of the first split of PascalVOC on all shots, run

python tools/run_experiments.py --num-gpus 8 \
        --shots 1 2 3 5 10 --seeds 0 30 --split 1

After training and evaluation, you can use tools/aggregate_seeds.py to aggregate the results over all the seeds to obtain one set of numbers. To aggregate the 3-shot results of the above command, run

python tools/aggregate_seeds.py --shots 3 --seeds 30 --split 1 \
        --print --plot
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022