E-RAFT: Dense Optical Flow from Event Cameras

Related tags

Deep LearningE-RAFT
Overview

E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT

This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Millhäusler, Daniel Gehrig and Davide Scaramuzza.

We also introduce DSEC-Flow (download here), the optical flow extension of the DSEC dataset. We are also hosting an automatic evaluation server and a public benchmark!

Visit our project webpage or download the paper directly here for more details. If you use any of this code, please cite the following publication:

@InProceedings{Gehrig3dv2021,
  author = {Mathias Gehrig and Mario Millh\"ausler and Daniel Gehrig and Davide Scaramuzza},
  title = {E-RAFT: Dense Optical Flow from Event Cameras},
  booktitle = {International Conference on 3D Vision (3DV)},
  year = {2021}
}

Download

Download the network checkpoints and place them in the folder checkpoints/:

Checkpoint trained on DSEC

Checkpoint trained on MVSEC 20 Hz

Checkpoint trained on MVSEC 45 Hz

Installation

Please install conda. Then, create new conda environment with python3.7 and all dependencies by running

conda env create --file environment.yml

Datasets

DSEC

The DSEC dataset for optical flow can be downloaded here. We prepared a script download_dsec_test.py for your convenience. It downloads the dataset directly into the OUTPUT_DIRECTORY with the expected directory structure.

download_dsec_test.py OUTPUT_DIRECTORY

MVSEC

To use the MVSEC dataset for our approach, it needs to be pre-processed into the right format. For your convenience, we provide the pre-processed dataset here:

MVSEC Outdoor Day 1 for 20 Hz evaluation

MVSEC Outdoor Day 1 for 45 Hz evaluation

Experiments

DSEC Dataset

For the evaluation of our method with warm-starting, execute the following command:

python3 main.py --path 
   

   

For the evaluation of our method without warm-starting, execute the following command:

python3 main.py --path 
   
     --type standard

   

MVSEC Dataset

For the evaluation of our method with warm-starting, trained on 20Hz MVSEC data, execute the following command:

python3 main.py --path 
   
     --dataset mvsec --frequency 20

   

For the evaluation of our method with warm-starting, trained on 45Hz MVSEC data, execute the following command:

python3 main.py --path 
   
     --dataset mvsec --frequency 45

   

Arguments

--path : Path where you stored the dataset

--dataset : Which dataset to use: ([dsec]/mvsec)

--type : Evaluation type ([warm_start]/standard)

--frequency : Evaluation frequency of MVSEC dataset ([20]/45) Hz

--visualize : Provide this argument s.t. DSEC results are visualized. MVSEC experiments are always visualized.

--num_workers : How many sub-processes to use for data loading (default=0)

Owner
Robotics and Perception Group
Robotics and Perception Group
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022