Anchor-free Oriented Proposal Generator for Object Detection

Overview

Anchor-free Oriented Proposal Generator for Object Detection

Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han,

Introudction

Oriented object detection is a practical and challenging task in remote sensing image interpretation. Nowadays, oriented detectors mostly use horizontal boxes as intermedium to derive oriented boxes from them. However, the horizontal boxes are inclined to get a small Intersection-over-Unions (IoUs) with ground truths, which may have some undesirable effects, such as introducing redundant noise, mismatching with ground truths, detracting from the robustness of detectors, etc. In this paper, we propose a novel Anchor-free Oriented Proposal Generator (AOPG) that abandons the horizontal boxes-related operations from the network architecture. AOPG first produces coarse oriented boxes by Coarse Location Module (CLM) in an anchor-free manner and then refines them into high-quality oriented proposals. After AOPG, we apply a Fast R-CNN head to produce the final detection results. Furthermore, the shortage of large-scale datasets is also a hindrance to the development of oriented object detection. To alleviate the data insufficiency, we release a new dataset on the basis of our DIOR dataset and name it DIOR-R. Massive experiments demonstrate the effectiveness of AOPG. Particularly, without bells and whistles, we achieve the highest accuracy of 64.41%, 75.24% and 96.22% mAP on the DIOR-R, DOTA and HRSC2016 datasets respectively.

Benchmark and model zoo

Model Backbone Dataset ms rr Lr schd mAP Google Baidu Yun
AOPG R50-FPN DIOR-R - - 1x 64.41 - -
AOPG R50-FPN DOTA1.0 - - 1x 75.24 - -
AOPG R101-FPN DOTA1.0 - - 1x 75.39 - -
AOPG R50-FPN DOTA1.0 1x 80.66 - -
AOPG R101-FPN DOTA1.0 1x 80.19 - -
AOPG R50-FPN HRSC2016 - - 3x 96.22 - -

You can download DIOR-R dataset at https://gcheng-nwpu.github.io/.

Installation

Please refer to install.md for installation and dataset preparation.

Get Started

Please refer to oriented_model_starting.md for training and testing.

Citation

This repo is based on OBBDetection.

If you use this repo in your research, please cite the following information.

@misc{cheng2021,
  title={Anchor-free Oriented Proposal Generator for Object Detection}, 
  author={Gong Cheng and Jiabao Wang and Ke Li and Xingxing Xie and Chunbo Lang and Yanqing Yao and Junwei Han},
  year={2021},
  eprint={2110.01931},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@article{RN37,
   author = {Li, Ke and Wan, Gang and Cheng, Gong and Meng, Liqiu and Han, Junwei},
   title = {Object detection in optical remote sensing images: A survey and a new benchmark},
   journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
   volume = {159},
   pages = {296-307},
   ISSN = {0924-2716},
   DOI = {10.1016/j.isprsjprs.2019.11.023},
   year = {2020},
   type = {Journal Article}
}
Owner
jbwang1997
Keep calm and carry on coding!!!
jbwang1997
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022