TransMorph: Transformer for Medical Image Registration

Overview

TransMorph: Transformer for Medical Image Registration

arXiv

keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registration

This is a PyTorch implementation of my paper:

Chen, Junyu, et al. "TransMorph: Transformer for Medical Image Registration. " arXiv, 2021.

TransMorph

TransMorph DIR Variants:

There are four TransMorph variants: TransMorph, TransMorph-diff, TransMorph-bspl, and TransMorph-Bayes.
Training and inference scripts are in TransMorph/, and the models are contained in TransMorph/model/.

  1. TransMorph: A hybrid Transformer-ConvNet network for image registration.
  2. TransMorph-diff: A probabilistic TransMorph that ensures a diffeomorphism.
  3. TransMorph-bspl: A B-spline TransMorph that ensures a diffeomorphism.
  4. TransMorph-Bayes: A Bayesian uncerntainty TransMorph that produces registration uncertainty estimate.

TransMorph Affine Model:

The scripts for TransMorph affine model are in TransMorph_affine/ folder.

train_xxx.py and infer_xxx.py are the training and inference scripts for TransMorph models.

Baseline Models:

We compared TransMorph with eight baseline registration methods + four Transformer architectures.
Baseline registration methods:

  1. SyN (ATNsPy)
  2. NiftyReg
  3. LDDMM
  4. deedsBCV
  5. VoxelMorph-1 & -2
  6. CycleMorph
  7. MIDIR

Baseline Transformer architectures:

  1. PVT
  2. nnFormer
  3. CoTr
  4. ViT-V-Net

Training and inference scripts for the baseline models will be available in the near future!

Dataset:

Due to restrictions, we cannot distribute our brain MRI data. However, several brain MRI datasets are publicly available online: IXI, ADNI, OASIS, ABIDE, etc. Note that those datasets may not contain labels (segmentation). To generate labels, you can use FreeSurfer, which is an open-source software for normalizing brain MRI images. Here are some useful commands in FreeSurfer: Brain MRI preprocessing and subcortical segmentation using FreeSurfer.

Citation:

If you find this code is useful in your research, please consider to cite:

@misc{chen2021transmorph,
title={TransMorph: Transformer for Medical Image Registration}, 
author={Junyu Chen and Yufan He and Eric C. Frey and Ye Li and Yong Du},
year={2021},
eprint={2111.10480},
archivePrefix={arXiv},
primaryClass={eess.IV}
}

TransMorph Architecture:

Example Results:

Qualitative comparisons:

Uncertainty Estimate by TransMorph-Bayes:

Quantitative Results:

Inter-patient Brain MRI:

XCAT-to-CT:

Reference:

Swin Transformer
easyreg
MIDIR
VoxelMorph

About Me

Owner
Junyu Chen
Ph.D. candidate in the Department of Electrical and Computer Engineering & the Department of Radiology and Radiological Science @ Johns Hopkins University
Junyu Chen
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022