source code the paper Fast and Robust Iterative Closet Point.

Overview

Fast-Robust-ICP

This repository includes the source code the paper Fast and Robust Iterative Closet Point.

Authors: Juyong Zhang, Yuxin Yao, Bailin Deng.

This code is protected under patent. It can be only used for research purposes. If you are interested in business purposes/for-profit use, please contact Juyong Zhang (the author, email: [email protected]).

This code was written by Yuxin Yao. If you have questions, please contact [email protected].

Compilation

The code is compiled using CMake and requires Eigen. It has been tested on Ubuntu 16.04 with gcc 5.4.0 and on Windows with Visual Studio 2015.

Follow the following steps to compile the code:

  1. Make sure Eigen is installed. We recommend version 3.3+.

    • Download Eigen from eigen.tuxfamily.org and extract it into a folder 'eigen' within the 'include' folder. Make sure the files 'include/eigen/Eigen/Dense' and 'include/eigen/unsupported/Eigen/MatrixFunctions' can be found
    • Alternatively: On Ubuntu, use the command "apt-get install libeigen3-dev" to install Eigen.
  2. Create a build folder 'build' within the root directory of the code

  3. Run cmake to generate the build files inside the build folder, and compile the source code:

    • On linux, run the following commands within the build folder:
    $ cmake -DCMAKE_BUILD_TYPE=Release ..
    $ make
    
    • On windows, use the cmake GUI to generate a visual studio solution file, and build the solution.
  4. Afterwards, there should be an exectuable file 'FRICP' generated.

Usage

The program is run with four input parameters:

  1. an input file storing the source point cloud;
  2. an input file storing the target point cloud;
  3. an output path storing the registered source point cloud and transformation;
  4. registration method:
0: ICP
1: AA-ICP
2: Ours (Fast ICP)
3: Ours (Robust ICP)
4: ICP Point-to-plane
5: Our (Robust ICP point-to-plane)
6: Sparse ICP
7: Sparse ICP point-to-plane

You can ignore the last parameter, in which case Ours (Robust ICP) will be used by default.

Example:

$ ./FRICP ./data/target.ply ./data/source.ply ./data/res/ 3

But obj and ply (Non-binary encoding) files are supported.

Initialization support

If you have an initial transformation that can be applied on the input source model to roughly align with the input target model, you can set use_init=true and set file_init to the initial file name in main.cpp . The format of the initial transformation is a 4x4 matrix([R, t; 0, 1]), where R is a 3x3 rotation matrix and t is a 3x1 translation vector. These numbers are stored in 4 rows, and separated by spaces in each row. This format is the same as the output transformation of this code. It is worth mentioning that this code will align the center of gravity of the initial source and target models by default before starting the registration process, but this operation will be no longer used when the initial transformation is provided. In our experiment, we directly use the output file of transformation matrix generated by Super4PCS as the initial file.

Citation

Please cite the following papers if it helps your research:

@article{zhang2021fast,
  author={Juyong Zhang and Yuxin Yao and Bailin Deng},
  title={Fast and Robust Iterative Closest Point}, 
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  year={2021},
  volume={},
  number={},
  pages={1-1}}

Acknowledgements

The code is adapted from the Sparse ICP implementation released by the authors.

Owner
yaoyuxin
yaoyuxin
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022