source code the paper Fast and Robust Iterative Closet Point.

Overview

Fast-Robust-ICP

This repository includes the source code the paper Fast and Robust Iterative Closet Point.

Authors: Juyong Zhang, Yuxin Yao, Bailin Deng.

This code is protected under patent. It can be only used for research purposes. If you are interested in business purposes/for-profit use, please contact Juyong Zhang (the author, email: [email protected]).

This code was written by Yuxin Yao. If you have questions, please contact [email protected].

Compilation

The code is compiled using CMake and requires Eigen. It has been tested on Ubuntu 16.04 with gcc 5.4.0 and on Windows with Visual Studio 2015.

Follow the following steps to compile the code:

  1. Make sure Eigen is installed. We recommend version 3.3+.

    • Download Eigen from eigen.tuxfamily.org and extract it into a folder 'eigen' within the 'include' folder. Make sure the files 'include/eigen/Eigen/Dense' and 'include/eigen/unsupported/Eigen/MatrixFunctions' can be found
    • Alternatively: On Ubuntu, use the command "apt-get install libeigen3-dev" to install Eigen.
  2. Create a build folder 'build' within the root directory of the code

  3. Run cmake to generate the build files inside the build folder, and compile the source code:

    • On linux, run the following commands within the build folder:
    $ cmake -DCMAKE_BUILD_TYPE=Release ..
    $ make
    
    • On windows, use the cmake GUI to generate a visual studio solution file, and build the solution.
  4. Afterwards, there should be an exectuable file 'FRICP' generated.

Usage

The program is run with four input parameters:

  1. an input file storing the source point cloud;
  2. an input file storing the target point cloud;
  3. an output path storing the registered source point cloud and transformation;
  4. registration method:
0: ICP
1: AA-ICP
2: Ours (Fast ICP)
3: Ours (Robust ICP)
4: ICP Point-to-plane
5: Our (Robust ICP point-to-plane)
6: Sparse ICP
7: Sparse ICP point-to-plane

You can ignore the last parameter, in which case Ours (Robust ICP) will be used by default.

Example:

$ ./FRICP ./data/target.ply ./data/source.ply ./data/res/ 3

But obj and ply (Non-binary encoding) files are supported.

Initialization support

If you have an initial transformation that can be applied on the input source model to roughly align with the input target model, you can set use_init=true and set file_init to the initial file name in main.cpp . The format of the initial transformation is a 4x4 matrix([R, t; 0, 1]), where R is a 3x3 rotation matrix and t is a 3x1 translation vector. These numbers are stored in 4 rows, and separated by spaces in each row. This format is the same as the output transformation of this code. It is worth mentioning that this code will align the center of gravity of the initial source and target models by default before starting the registration process, but this operation will be no longer used when the initial transformation is provided. In our experiment, we directly use the output file of transformation matrix generated by Super4PCS as the initial file.

Citation

Please cite the following papers if it helps your research:

@article{zhang2021fast,
  author={Juyong Zhang and Yuxin Yao and Bailin Deng},
  title={Fast and Robust Iterative Closest Point}, 
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  year={2021},
  volume={},
  number={},
  pages={1-1}}

Acknowledgements

The code is adapted from the Sparse ICP implementation released by the authors.

Owner
yaoyuxin
yaoyuxin
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022