Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Overview

Neural Architecture Search for Spiking Neural Networks

Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https://arxiv.org/abs/2201.10355)

For getting knowledge on NAS without training in ANN domain (refer: https://github.com/BayesWatch/nas-without-training)

Prerequisites

  • Python 3.9
  • PyTorch 1.10.0
  • NVIDIA GPU (>= 12GB)
  • CUDA 10.2 (optional)

Getting Started

Conda Environment Setting

conda create -n SNASNet 
conda activate SNASNet
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install scipy

Spikingjelly Installation (ref: https://github.com/fangwei123456/spikingjelly)

git clone https://github.com/fangwei123456/spikingjelly.git
cd spikingjelly
python setup.py install

Training and testing

  • Arguments required for training and testing are contained in ``config.py```
  • Here is an example of running an experiment on CIFAR100
  • (if a user want to skip search process and use predefined architecgtur) A architecture can be parsed by --cnt_mat 0302 0030 3003 0000 format

Example) Architecture and the corresponding connection matrix

Training

  • Run the following command
python search_snn.py  --exp_name 'cifar100_backward' --dataset 'cifar100'  --celltype 'backward' --batch_size 32 --num_search 5000 

simple argument instruction

--exp_name: savefile name

--dataset: dataset for experiment

--celltype: find backward connections or forward connections

--num_search: number of architecture candidates for searching

Testing (on pretrained model)

  • As a first step, download pretrained parameters (link) to ./savemodel/save_cifar100_bw.pth.tar
  • The above pretrained model is for CIFAR100 / architecture --cnt_mat 0302 0030 3003 0000

  • Run the following command

python search_snn.py  --dataset 'cifar100' --cnt_mat 0302 0030 3003 0000 --savemodel_pth './savemodel/save_cifar100_bw.pth.tar'  --celltype 'backward'
Owner
Intelligent Computing Lab at Yale University
Intelligent Computing Lab at Yale University
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022