Pytorch library for fast transformer implementations

Overview

Fast Transformers

Transformers are very successful models that achieve state of the art performance in many natural language tasks. However, it is very difficult to scale them to long sequences due to the quadratic scaling of self-attention.

This library was developed for our research on fast attention for transformers. You can find a list of our papers in the docs as well as related papers and papers that we have implemented.

Quick-start

The following code builds a transformer with softmax attention and one with linear attention and compares the time required by each to encode a sequence with 1000 elements.

import torch
from fast_transformers.builders import TransformerEncoderBuilder

# Create the builder for our transformers
builder = TransformerEncoderBuilder.from_kwargs(
    n_layers=8,
    n_heads=8,
    query_dimensions=64,
    value_dimensions=64,
    feed_forward_dimensions=1024
)

# Build a transformer with softmax attention
builder.attention_type = "full"
softmax_model = builder.get()

# Build a transformer with linear attention
builder.attention_type = "linear"
linear_model = builder.get()

# Construct the dummy input
X = torch.rand(10, 1000, 8*64)

# Prepare everythin for CUDA
X = X.cuda()
softmax_model.cuda()
softmax_model.eval()
linear_model.cuda()
linear_model.eval()

# Warmup the GPU
with torch.no_grad():
    softmax_model(X)
    linear_model(X)
torch.cuda.synchronize()

# Measure the execution time
softmax_start = torch.cuda.Event(enable_timing=True)
softmax_end = torch.cuda.Event(enable_timing=True)
linear_start = torch.cuda.Event(enable_timing=True)
linear_end = torch.cuda.Event(enable_timing=True)

with torch.no_grad():
    softmax_start.record()
    y = softmax_model(X)
    softmax_end.record()
    torch.cuda.synchronize()
    print("Softmax: ", softmax_start.elapsed_time(softmax_end), "ms")
    # Softmax: 144 ms (on a GTX1080Ti)

with torch.no_grad():
    linear_start.record()
    y = linear_model(X)
    linear_end.record()
    torch.cuda.synchronize()
    print("Linear: ", linear_start.elapsed_time(linear_end), "ms")
    # Linear: 68 ms (on a GTX1080Ti)

Dependencies & Installation

The fast transformers library has the following dependencies:

  • PyTorch
  • C++ toolchain
  • CUDA toolchain (if you want to compile for GPUs)

For most machines installation should be as simple as:

pip install --user pytorch-fast-transformers

Note: macOS users should ensure they have llvm and libomp installed. Using the homebrew package manager, this can be accomplished by running brew install llvm libomp.

Documentation

There exists a dedicated documentation site but you are also encouraged to read the source code.

Research

Ours

To read about the theory behind some attention implementations in this library we encourage you to follow our research.

  • Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (2006.16236)
  • Fast Transformers with Clustered Attention (2007.04825)

If you found our research helpful or influential please consider citing

@inproceedings{katharopoulos_et_al_2020,
    author = {Katharopoulos, A. and Vyas, A. and Pappas, N. and Fleuret, F.},
    title = {Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention},
    booktitle = {Proceedings of the International Conference on Machine Learning (ICML)},
    year = {2020}
}

@article{vyas_et_al_2020,
    author={Vyas, A. and Katharopoulos, A. and Fleuret, F.},
    title={Fast Transformers with Clustered Attention},
    booktitle = {Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS)},
    year={2020}
}

By others

  • Efficient Attention: Attention with Linear Complexities (1812.01243)
  • Linformer: Self-Attention with Linear Complexity (2006.04768)
  • Reformer: The Efficient Transformer (2001.04451)

Support, License and Copyright

This software is distributed with the MIT license which pretty much means that you can use it however you want and for whatever reason you want. All the information regarding support, copyright and the license can be found in the LICENSE file in the repository.

Owner
Idiap Research Institute
Idiap Research Institute
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022