PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Related tags

Deep LearningSDR
Overview

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations

This is the official PyTorch implementation of our work: "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations" published at CVPR 2021.

In this paper, we present some novel approaches constraining the feature space for continual learning semantic segmentation models. The evaluation on Pascal VOC2012 and on ADE20K validated our method.

Paper
5-min video
slides
poster
teaser

Requirements

This repository uses the following libraries:

  • Python (3.7.6)
  • Pytorch (1.4.0) [tested up to 1.7.1]
  • torchvision (0.5.0)
  • tensorboardX (2.0)
  • matplotlib (3.1.1)
  • numpy (1.18.1)
  • apex (0.1) [optional]
  • inplace-abn (1.0.7) [optional]

We also assume to have installed pytorch.distributed package.

All the dependencies are listed in the requirements.txt file which can be used in conda as:
conda create --name <env> --file requirements.txt

How to download data

In this project we use two dataset, ADE20K and Pascal-VOC 2012. We provide the scripts to download them in 'data/download_<dataset_name>.sh'. The script takes no inputs and you should use it in the target directory (where you want to download data).

How to perform training

The most important file is run.py, that is in charge to start the training or test procedure. To run it, simpy use the following command:

python -m torch.distributed.launch --nproc_per_node=<num_GPUs> run.py --data_root <data_folder> --name <exp_name> .. other args ..

The default is to use a pretraining for the backbone used, which is the one officially released by PyTorch models and it will be downloaded automatically. If you don't want to use pretrained, please use --no-pretrained.

There are many options and you can see them all by using --help option. Some of them are discussed in the following:

  • please specify the data folder using: --data_root <data_root>
  • dataset: --dataset voc (Pascal-VOC 2012) | ade (ADE20K)
  • task: --task <task>, where tasks are
    • 15-5, 15-5s, 19-1 (VOC), 100-50, 100-10, 50, 100-50b, 100-10b, 50b (ADE, b indicates the order)
  • step (each step is run separately): --step <N>, where N is the step number, starting from 0
  • (only for Pascal-VOC) disjoint is default setup, to enable overlapped: --overlapped
  • learning rate: --lr 0.01 (for step 0) | 0.001 (for step > 0)
  • batch size: --batch_size 8 (Pascal-VOC 2012) | 4 (ADE20K)
  • epochs: --epochs 30 (Pascal-VOC 2012) | 60 (ADE20K)
  • method: --method <method name>, where names are
    • FT, LWF, LWF-MC, ILT, EWC, RW, PI, MIB, CIL, SDR
      Note that method overwrites other parameters, but can be used as a kickstart to use default parameters for each method (see more on this in the hyperparameters section below)

For all the details please follow the information provided using the help option.

Example training commands

We provide some example scripts in the *.slurm and *.bat files.
For instance, to run the step 0 of 19-1 VOC2012 you can run:

python -u -m torch.distributed.launch 1> 'outputs/19-1/output_19-1_step0.txt' 2>&1 \
--nproc_per_node=1 run.py \
--batch_size 8 \
--logdir logs/19-1/ \
--dataset voc \
--name FT \
--task 19-1 \
--step 0 \
--lr 0.001 \
--epochs 30 \
--debug \
--sample_num 10 \
--unce \
--loss_de_prototypes 1 \
--where_to_sim GPU_windows

Note: loss_de_prototypes is set to 1 only for having the prototypes computed in the 0-th step (no distillation is actually computed of course).

Then, the step 1 of the same scenario can be computed simply as:

python -u -m torch.distributed.launch 1> 'outputs/19-1/output_19-1_step1.txt'  2>&1 \
--nproc_per_node=1 run.py \
--batch_size 8 \
--logdir logs/19-1/ \
--dataset voc \
--task 19-1 \
--step 1 \
--lr 0.0001 \
--epochs 30 \
--debug \
--sample_num 10 \
--where_to_sim GPU_windows \
--method SDR \
--step_ckpt 'logs/19-1/19-1-voc_FT/19-1-voc_FT_0.pth'

The results obtained are reported inside the outputs/ and logs/ folder, which can be downloaded here, and are 0.4% of mIoU higher than those reported in the main paper due to a slightly changed hyperparameter.

To run other approaches it is sufficient to change the --method parameter into one of the following: FT, LWF, LWF-MC, ILT, EWC, RW, PI, MIB, CIL, SDR.

Note: for the best results, the hyperparameters may change. Please see further details on the hyperparameters section below.

Once you trained the model, you can see the result on tensorboard (we perform the test after the whole training) or on the output files. or you can test it by using the same script and parameters but using the option

--test

that will skip all the training procedure and test the model on test data.

Do you want to try our constraints on your codebase or task?

If you want to try our novel constraints on your codebase or on a different problem you can check the utils/loss.py file. Here, you can take the definitions of the different losses and embed them into your codebase
The names of the variables could be interpreted as:

  • targets-- ground truth map,
  • outputs-- segmentation map output from the current network
  • outputs_old-- segmentation map output from the previous network
  • features-- features taken from the end of the currently-trained encoder,
  • features_old-- features taken from the end of the previous encoder [used for distillation on the encoder on ILT, but not used on SDR],
  • prototypes-- prototypical feature representations
  • incremental_step -- index of the current incremental step (0 if first non-incremental training is performed)
  • classes_old-- index of previous classes

Range for the Hyper-parameters

For what concerns the hyperparameters of our approach:

  • The parameter for the distillation loss is in the same range of that of MiB,
  • Prototypes matching: lambda was searched in range 1e-1 to 1e-3,
  • Contrastive learning (or clustering): lambda was searched in the range of 1e-2 to 1e-3,
  • Features sparsification: lambda was searched in the range of 1e-3 to 1e-5 A kick-start could be to use KD 10, PM 1e-2, CL 1e-3 and FS 1e-4.
    The best parameters may vary across datasets and incremental setup. However, we typically did a grid search and kept it fixed across learning steps.

So, writing explicitly all the parameters, the command would look something like the following:

python -u -m torch.distributed.launch 1> 'outputs/19-1/output_19-1_step1_custom.txt'  2>&1 \
--nproc_per_node=1 run.py \
--batch_size 8 \
--logdir logs/19-1/ \
--dataset voc \
--task 19-1 \
--step 1 \
--lr 0.0001 \
--epochs 30 \
--debug \
--sample_num 10 \
--where_to_sim GPU_windows \
--unce \
--loss_featspars $loss_featspars \
--lfs_normalization $lfs_normalization \
--lfs_shrinkingfn $lfs_shrinkingfn \
--lfs_loss_fn_touse $lfs_loss_fn_touse \
--loss_de_prototypes $loss_de_prototypes \
--loss_de_prototypes_sumafter \
--lfc_sep_clust $lfc_sep_clust \
--loss_fc $loss_fc \
--loss_kd $loss_kd \
--step_ckpt 'logs/19-1/19-1-voc_FT/19-1-voc_FT_0.pth'

Cite us

If you use this repository, please consider to cite

   @inProceedings{michieli2021continual,
   author = {Michieli, Umberto and Zanuttigh, Pietro},
   title  = {Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations},
   booktitle = {Computer Vision and Pattern Recognition (CVPR)},
   year      = {2021},
   month     = {June}
   }

And our previous works ILT and its journal extension.

Acknowledgements

We gratefully acknowledge the authors of MiB paper for the insightful discussion and for providing the open source codebase, which has been the starting point for our work.
We also acknowledge the authors of CIL for providing their code even before the official release.

Owner
Multimedia Technology and Telecommunication Lab
Department of Information Engineering, University of Padova
Multimedia Technology and Telecommunication Lab
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023