Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Overview

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,
Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th International Conference on Artificial Intelligence in Information and Communication February 21 (Mon.) ~ 24 (Thur.), 2022, Guam, USA & Virtual Conference)

Gaze Estimation, Jetson Board Tx2, Realsense d435i Camera, Demo Video

Demo

How to run?

If you want to finetune this deep learning model. You first need to collect your dataset. You need to look at the center of each rectangle (36 rectangles).

python3 collect_dataset.py

Once you finish collecting your dataset. You need to change the folder of subject in run_finetune.py. Then, you can start finetuning this deep learning model.

python3 run_finetune.py

Remember to rebuild TensorRT if you first run this source in your device. You need to move your working folder to ext\tensorrt_mtcnn.

chmod +x ./build.sh
./build.sh

You now can run to test this gaze estimation by first connect a realsense camera to Jetson TX2. Run the following script.

python3 run_camera.py

To test with your recorded video, you should specify you video location in run_camera_test.py. Run the following script.

python3 run_camera_test.py

Dependencies

  1. FAZE: Few-Shot Adaptive Gaze Estimation: https://github.com/NVlabs/few_shot_gaze

  2. eos: https://github.com/patrikhuber/eos

  3. HRNets: https://github.com/HRNet/HRNet-Facial-Landmark-Detection

  4. mtcnn-pytorch: https://github.com/TropComplique/mtcnn-pytorch

  5. Realtime-facial-landmark-detection: https://github.com/pathak-ashutosh/Realtime-facial-landmark-detection

  6. MTCNN TensorRT(Demo #2: MTCNN): https://github.com/jkjung-avt/tensorrt_demos#mtcnn

    5.1 TensorRT MTCNN Face Detector

    5.2 Optimizing TensorRT MTCNN

Acknowledgement

A large part of the code is borrowed from FAZE: Few-Shot Adaptive Gaze Estimation and MTCNN TensorRT(Demo #2: MTCNN). Thanks for their wonderful works.

Owner
Linh
Linh
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022