Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Overview

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021.

Introduction

We proposed a novel model training paradigm for few-shot semantic segmentation. Instead of meta-learning the whole, complex segmentation model, we focus on the simplest classifier part to make new-class adaptation more tractable. Also, a novel meta-learning algorithm that leverages a Classifier Weight Transformer (CWT) for adapting dynamically the classifier weights to every query sample is introduced to eliminate the impact of intra-class discripency.

Architecture

Environment

Other configurations can also work, but the results may be slightly different.

  • torch==1.6.0
  • numpy==1.19.1
  • cv2==4.4.0
  • pyyaml==5.3.1

Dataset

We follow the same rule to download and process dataset as that in https://github.com/Jia-Research-Lab/PFENet. After processing, please change the "data_root" and "train/val_list" in config files accordingly.

Pre-trained models in the first stage

For convenience, we provide the pre-trained models on base classes for each split. Download it here: https://drive.google.com/file/d/1yHUNI1iTwF5U_HqCQ4kF6ti8lepcrBBY/view?usp=sharing, and change "resume_weights" to this folder.

Episodic training and inference

  • The general training script
sh scripts/train.sh {data} {split} {[gpu_ids]} {layers} {shots}
  • This is an example with 1-shot, ResNet-50, split-0 on PASCAL and GPU device [0].
sh scripts/train.sh pascal 0 [0] 50 1
  • Inference script
sh scripts/test.sh {data} {shot} {[gpu_ids]} {layers} {split}

Contact

Please write down issues or contact me via zhihe.lu [at] surrey.ac.uk if you have any questions.

Citation

If you feel helpful of this work, please cite it. Will update this when it is officially published on ICCV.

@misc{lu2021simpler,
      title={Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer}, 
      author={Zhihe lu and Sen He and Xiatian Zhu and Li Zhang and Yi-Zhe Song and Tao Xiang},
      year={2021},
      eprint={2108.03032},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgments

Thanks to the code contributors. Some parts of code are borrowed from https://github.com/Jia-Research-Lab/PFENet and https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation.

Owner
Lucas
A PhD student on Computer Vision.
Lucas
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022