A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

Overview

idn-solver

Paper | Project Page

This repository contains the code release of our ICCV 2021 paper:

A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

Wang Zhao*, Shaohui Liu*, Yi Wei, Hengkai Guo, Yong-Jin Liu

Installation

We recommend to use conda to setup a specified environment. Run

conda env create -f environment.yml

Test on a sequence

First download the pretrained model from here and put it under ./pretrain/ folder.

Prepare the sequence data with color images, camera poses (4x4 cam2world transformation) and intrinsics. The sequence data structure should be like:

sequence_name
  | color
      | 00000.jpg
  | pose
      | 00000.txt
  | K.txt

Run the following command to get the outputs:

python infer_folder.py --seq_dir /path/to/the/sequence/data --output_dir /path/to/save/outputs --config ./configs/test_folder.yaml

Tune the "reference gap" parameter to make sure there are sufficient overlaps and camera translations within an image pair. For ScanNet-like sequence, we recommend to use reference_gap of 20.

Test on ScanNet

Prepare ScanNet test split data

Download the ScanNet test split data from the official site and pre-process the data using:

python ./data/preprocess.py --data_dir /path/to/scannet/test/split/ --output_dir /path/to/save/pre-processed/scannet/test/data

This includes 1. resize the color images to 480x640 resolution 2. sample the data with interval of 20

Run evaluation

python eval_scannet.py --data_dir /path/to/processed/scannet/test/split/ --config ./configs/test_scannet.yaml

Train

Prepare ScanNet training data

We use the pre-processed ScanNet data from NAS, you could download the data using this link. The data structure is like:

scannet
  | scannet_nas
    | train
      | scene0000_00
          | color
            | 0000.jpg
          | pose
            | 0000.txt
          | depth
            | 0000.npy
          | intrinsic
          | normal
            | 0000_normal.npy
    | val
  | scans_test_sample (preprocessed ScanNet test split)

Run training

Modify the "dataset_path" variable with yours in the config yaml.

The network is trained with a two-stage strategy. The whole training process takes ~6 days with 4 Nvidia V100 GPUs.

python train.py ./configs/scannet_stage1.yaml
python train.py ./configs/scannet_stage2.yaml

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{Zhao_2021_ICCV,
    author    = {Zhao, Wang and Liu, Shaohui and Wei, Yi and Guo, Hengkai and Liu, Yong-Jin},
    title     = {A Confidence-Based Iterative Solver of Depths and Surface Normals for Deep Multi-View Stereo},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {6168-6177}
}

Acknowledgement

This project heavily relies codes from NAS and we thank the authors for releasing their code.

We also thank Xiaoxiao Long for kindly helping with ScanNet evaluations.

Owner
zhaowang
Hungry and Humble
zhaowang
MohammadReza Sharifi 27 Dec 13, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022