A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Overview

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Requirements

  • pytorch 1.1+
  • torchvision 0.3+
  • pyclipper
  • opencv3
  • gcc 4.9+

Download

PAN_resnet18_FPEM_FFM and PAN_resnet18_FPEM_FFM on icdar2015:

the updated model(resnet18:78.8,shufflenetv2: 72.4,lr:le-3) is not the best model

google drive

Data Preparation

train: prepare a text in the following format, use '\t' as a separator

/path/to/img.jpg path/to/label.txt
...

val: use a folder

img/ store img
gt/ store gt file

Train

  1. config the train_data_path,val_data_pathin config.json
  2. use following script to run
python3 train.py

Test

eval.py is used to test model on test dataset

  1. config model_path, img_path, gt_path, save_path in eval.py
  2. use following script to test
python3 eval.py

Predict

predict.py is used to inference on single image

  1. config model_path, img_path, in predict.py
  2. use following script to predict
python3 predict.py

The project is still under development.

Performance

ICDAR 2015

only train on ICDAR2015 dataset

Method image size (short size) learning rate Precision (%) Recall (%) F-measure (%) FPS
paper(resnet18) 736 x x x 80.4 26.1
my (ShuffleNetV2+FPEM_FFM+pse扩张) 736 1e-3 81.72 66.73 73.47 24.71 (P100)
my (resnet18+FPEM_FFM+pse扩张) 736 1e-3 84.93 74.09 79.14 21.31 (P100)
my (resnet50+FPEM_FFM+pse扩张) 736 1e-3 84.23 76.12 79.96 14.22 (P100)
my (ShuffleNetV2+FPEM_FFM+pse扩张) 736 1e-4 75.14 57.34 65.04 24.71 (P100)
my (resnet18+FPEM_FFM+pse扩张) 736 1e-4 83.89 69.23 75.86 21.31 (P100)
my (resnet50+FPEM_FFM+pse扩张) 736 1e-4 85.29 75.1 79.87 14.22 (P100)
my (resnet18+FPN+pse扩张) 736 1e-3 76.50 74.70 75.59 14.47 (P100)
my (resnet50+FPN+pse扩张) 736 1e-3 71.82 75.73 73.72 10.67 (P100)
my (resnet18+FPN+pse扩张) 736 1e-4 74.19 72.34 73.25 14.47 (P100)
my (resnet50+FPN+pse扩张) 736 1e-4 78.96 76.27 77.59 10.67 (P100)

examples

todo

  • MobileNet backbone

  • ShuffleNet backbone

reference

  1. https://arxiv.org/pdf/1908.05900.pdf
  2. https://github.com/WenmuZhou/PSENet.pytorch

If this repository helps you,please star it. Thanks.

Owner
zhoujun
深度学习工程师,最近准备做端侧
zhoujun
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022