[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Overview

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Derek Lim*, Felix Hohne*, Xiuyu Li*, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, Ser-Nam Lim

Published at NeurIPS 2021

Here are codes to load our proposed datasets, compute our measure of homophily, and train various graph machine learning models in our experimental setup. We include an implementation of the new graph neural network LINKX that we develop.

Organization

main.py contains the main full batch experimental scripts.

main_scalable.py contains the minibatching experimental scripts.

parse.py contains flags for running models with specific settings and hyperparameters.

dataset.py loads our datasets.

models.py contains implementations for graph machine learning models, though C&S (correct_smooth.py, cs_tune_hparams.py) are in separate files. Running several of the GNN models on larger datasets may require at least 24GB of VRAM. Our LINKX model is implemented in this file.

homophily.py contains functions for computing homophily measures, including the one that we introduce in our_measure.

experiments/ contains the bash files to reproduce full batch experiments.

scalable_experiments/ contains the bash files to reproduce minibatching experiments.

wiki_scraping/ contains the Python scripts to reproduce the "wiki" dataset by querying the Wikipedia API and cleaning up the data.

Datasets

Screenshot 2021-06-03 at 6 04 01 PM

As discussed in the paper, our proposed datasets are "genius", "twitch-gamer", "fb100", "pokec", "wiki", "arxiv-year", and "snap-patents", which can be loaded by load_nc_dataset in dataset.py by passing in their respective string name. Many of these datasets are included in the data/ directory, but wiki, twitch-gamer, snap-patents, and pokec are automatically downloaded from a Google drive link when loaded from dataset.py. The arxiv-year dataset is downloaded using OGB downloaders. load_nc_dataset returns an NCDataset, the documentation for which is also provided in dataset.py. It is functionally equivalent to OGB's Library-Agnostic Loader for Node Property Prediction, except for the fact that it returns torch tensors. See the OGB website for more specific documentation. Just like the OGB function, dataset.get_idx_split() returns fixed dataset split for training, validation, and testing.

When there are multiple graphs (as in the case of fb100), different ones can be loaded by passing in the sub_dataname argument to load_nc_dataset in dataset.py. In particular, fb100 consists of 100 graphs. We only include ["Amherst41", "Cornell5", "Johns Hopkins55", "Penn94", "Reed98"] in this repo, although others may be downloaded from the internet archive. In the paper we test on Penn94.

References

The datasets come from a variety of sources, as listed here:

  • Penn94. Traud et al 2012. Social Structure of Facebook Networks
  • pokec. Leskovec et al. Stanford Network Analysis Project
  • arXiv-year. Hu et al 2020. Open Graph Benchmark
  • snap-patents. Leskovec et al. Stanford Network Analysis Project
  • genius. Lim and Benson 2020. Expertise and Dynamics within Crowdsourced Musical Knowledge Curation: A Case Study of the Genius Platform
  • twitch-gamers. Rozemberczki and Sarkar 2021. Twitch Gamers: a Dataset for Evaluating Proximity Preserving and Structural Role-based Node Embeddings
  • wiki. Collected by the authors of this work in 2021.

Installation instructions

  1. Create and activate a new conda environment using python=3.8 (i.e. conda create --name non-hom python=3.8)
  2. Activate your conda environment
  3. Check CUDA version using nvidia-smi
  4. run bash install.sh cu110, replacing cu110 with your CUDA version (CUDA 11 -> cu110, CUDA 10.2 -> cu102, CUDA 10.1 -> cu101). We tested on Ubuntu 18.04, CUDA 11.0.

Running experiments

  1. Make sure a results folder exists in the root directory.
  2. Our experiments are in the experiments/ and scalable_experiments/ directory. There are bash scripts for running methods on single and multiple datasets. Please note that the experiments must be run from the root directory, e.g. (bash experiments/mixhop_exp.sh snap-patents). For instance, to run the MixHop experiments on arxiv-year, use:
bash experiments/mixhop_exp.sh arxiv-year

To run LINKX on pokec, use:

bash experiments/linkx_exp.sh pokec

To run LINK on Penn94, use:

bash experiments/link_exp.sh fb100 Penn94

To run GCN-cluster on twitch-gamers, use:

bash scalable_experiments/gcn_cluster.sh twitch-gamer

To run LINKX minibatched on wiki, use

bash scalable_experiments/linkx_exp.sh wiki

To run LINKX on Geom-GCN with full hyperparameter grid on chameleon, use

bash experiments/linkx_tuning.sh chameleon
Owner
Cornell University Artificial Intelligence
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023