Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

Overview

A Latent Transformer for Disentangled Face Editing in Images and Videos

Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

[Video Editing Results]

Requirements

Dependencies

  • Python 3.6
  • PyTorch 1.8
  • Opencv
  • Tensorboard_logger

You can install a new environment for this repo by running

conda env create -f environment.yml
conda activate lattrans 

Prepare StyleGAN2 encoder and generator

  • We use the pretrained StyleGAN2 encoder and generator released from paper Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation. Download and save the official implementation to pixel2style2pixel/ directory. Download and save the pretrained model to pixel2style2pixel/pretrained_models/.

  • In order to save the latent codes to the designed path, we slightly modify pixel2style2pixel/scripts/inference.py.

    # modify run_on_batch()
    if opts.latent_mask is None:
        result_batch = net(inputs, randomize_noise=False, resize=opts.resize_outputs, return_latents=True)
        
    # modify run()
    tic = time.time()
    result_batch, latent_batch = run_on_batch(input_cuda, net, opts) 
    latent_save_path = os.path.join(test_opts.exp_dir, 'latent_code_%05d.npy'%global_i)
    np.save(latent_save_path, latent_batch.cpu().numpy())
    toc = time.time()
    

Training

  • Prepare the training data

    To train the latent transformers, you can download our prepared dataset to the directory data/ and the pretrained latent classifier to the directory models/.

    sh download.sh
    

    You can also prepare your own training data. To achieve that, you need to map your dataset to latent codes using the StyleGAN2 encoder. The corresponding label file is also required. You can continue to use our pretrained latent classifier. If you want to train your own latent classifier on new labels, you can use pretraining/latent_classifier.py.

  • Training

    You can modify the training options of the config file in the directory configs/.

    python train.py --config 001 
    

Testing

Single Attribute Manipulation

Make sure that the latent classifier is downloaded to the directory models/ and the StyleGAN2 encoder is prepared as required. After training your latent transformers, you can use test.py to run the latent transformer for the images in the test directory data/test/. We also provide several pretrained models here (run download.sh to download them). The output images will be saved in the folder outputs/. You can change the desired attribute with --attr.

python test.py --config 001 --attr Eyeglasses --out_path ./outputs/

If you want to test the model on your custom images, you need to first encoder the images to the latent space of StyleGAN using the pretrained encoder.

cd pixel2style2pixel/
python scripts/inference.py \
--checkpoint_path=pretrained_models/psp_ffhq_encode.pt \
--data_path=../data/test/ \
--exp_dir=../data/test/ \
--test_batch_size=1

Sequential Attribute Manipulation

You can reproduce the sequential editing results in the paper using notebooks/figure_sequential_edit.ipynb and the results in the supplementary material using notebooks/figure_supplementary.ipynb.

User Interface

We also provide an interactive visualization notebooks/visu_manipulation.ipynb, where the user can choose the desired attributes for manipulation and define the magnitude of edit for each attribute.

Video Manipulation

Video Result

We provide a script to achieve attribute manipulation for the videos in the test directory data/video/. Please ensure that the StyleGAN2 encoder is prepared as required. You can upload your own video and modify the options in run_video_manip.sh. You can view our video editing results presented in the paper.

sh run_video_manip.sh

Citation

@article{yao2021latent,
  title={A Latent Transformer for Disentangled Face Editing in Images and Videos},
  author={Yao, Xu and Newson, Alasdair and Gousseau, Yann and Hellier, Pierre},
  journal={2021 International Conference on Computer Vision},
  year={2021}
}

License

Copyright © 2021, InterDigital R&D France. All rights reserved.

This source code is made available under the license found in the LICENSE.txt in the root directory of this source tree.

Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022