Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Overview

ToeplitzLDA

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from label proportions (LLP) example or the example script.

Note we used Ubuntu 20.04 with python 3.8.10 to generate our results.

Getting Started / User Setup

If you only want to use this library, you can use the following setup. Note that this setup is based on a fresh Ubuntu 20.04 installation.

Getting fresh ubuntu ready

apt install python3-pip python3-venv

Python package installation

In this setup, we assume you want to run the examples that actually make use of real EEG data or the actual unsupervised speller replay. If you only want to employ ToeplitzLDA in your own spatiotemporal data / without mne and moabb then you can remove the package extra neuro, i.e. pip install toeplitzlda or pip install toeplitzlda[solver]

  1. (Optional) Install fortran Compiler. On ubuntu: apt install gfortran
  2. Create virtual environment: python3 -m venv toeplitzlda_venv
  3. Activate virtual environment: source toeplitzlda_venv/bin/activate
  4. Install toeplitzlda: pip install toeplitzlda[neuro,solver], if you dont have a fortran compiler: pip install toeplitzlda[neuro]

Check if everything works

Either clone this repo or just download the scripts/example_toeplitz_lda_bci_data.py file and run it: python example_toeplitz_lda_bci_data.py. Note that this will automatically download EEG data with a size of around 650MB.

Alternatively, you can use the scripts/example_toeplitz_lda_generated_data.py where artificial data is generated. Note however, that only stationary background noise is modeled and no interfering artifacts as is the case in, e.g., real EEG data. As a result, the overfitting effect of traditional slda on these artifacts is reduced.

Using ToeplitzLDA in place of traditional shrinkage LDA from sklearn

If you have already your own pipeline, you can simply add toeplitzlda as a dependency in your project and then replace sklearns LDA, i.e., instead of:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage="auto")  # or eigen solver

use

from toeplitzlda.classification import ToeplitzLDA
clf = ToeplitzLDA(n_channels=your_n_channels)

where your_n_channels is the number of channels of your signal and needs to be provided for this method to work.

If you prefer using sklearn, you can only replace the covariance estimation part, note however, that this in practice (on our data) yields worse performance, as sklearn estimates the class-wise covariance matrices and averages them afterwards, whereas we remove the class-wise means and the estimate one covariance matrix from the pooled data.

So instead of:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage="auto")  # or eigen solver

you would use

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from toeplitzlda.classification.covariance import ToepTapLW
toep_cov = ToepTapLW(n_channels=your_n_channels)
clf = LinearDiscriminantAnalysis(solver="lsqr", covariance_estimator=toep_cov)  # or eigen solver

Development Setup

We use a fortran compiler to provide speedups for solving block-Toeplitz linear equation systems. If you are on ubuntu you can install gfortran.

We use poetry for dependency management. If you have it installed you can simply use poetry install to set up the virtual environment with all dependencies. All extra features can be installed with poetry install -E solver,neuro.

If setup does not work for you, please open an issue. We cannot guarantee support for many different platforms, but could provide a singularity image.

Learning from label proportions

Use the run_llp.py script to apply ToeplitzLDA in the LLP scenario and create the results file for the different preprocessing parameters. These can then be visualized using visualize_llp.py to create the plots shown in our publication. Note that running LLP takes a while and the two datasets will be downloaded automatically and are approximately 16GB in size. Alternatively, you can use the results provided by us that are stored in scripts/usup_replay/provided_results by moving/copying them to the location that visualize_llp.py looks for.

ERP benchmark

This is not yet available.

Note this benchmark will take quite a long time if you do not have access to a computing cluster. The public datasets (including the LLP datasets) total a size of approximately 120GB.

BLOCKING TODO: How should we handle the private datasets?

FAQ

Why is my classification performance for my stationary spatiotemporal data really bad?

Check if your data is in channel-prime order, i.e., in the flattened feature vector, you first enumerate over all channels (or some other spatially distributed sensors) for the first time point and then for the second time point and so on. If this is not the case, tell the classifier: e.g. ToeplitzLDA(n_channels=16, data_is_channel_prime=False)

Owner
Jan Sosulski
Jan Sosulski
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
113 Nov 28, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022