TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

Related tags

Deep LearningTransFGU
Overview

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li, Rong Jin

[Preprint]

Getting Started

Create the environment

# create conda env
conda create -n TransFGU python=3.8
# activate conda env
conda activate TransFGU
# install pytorch
conda install pytorch=1.8 torchvision cudatoolkit=10.1
# install other dependencies
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html
pip install -r requirements.txt

Dataset Preparation

the structure of dataset folders should be as follow:

data/
    │── MSCOCO/
    │     ├── images/
    │     │     ├── train2017/
    │     │     └── val2017/
    │     └── annotations/
    │           ├── train2017/
    │           ├── val2017/
    │           ├── instances_train2017.json
    │           └── instances_val2017.json
    │── Cityscapes/
    │     ├── leftImg8bit/
    │     │     ├── train/
    │     │     │       ├── aachen
    │     │     │       └── ...
    │     │     └──── val/
    │     │             ├── frankfurt
    │     │             └── ...
    │     └── gtFine/
    │           ├── train/
    │           │       ├── aachen
    │           │       └── ...
    │           └──── val/
    │                   ├── frankfurt
    │                   └── ...
    │── PascalVOC/
    │     ├── JPEGImages/
    │     ├── SegmentationClass/
    │     └── ImageSets/
    │           └── Segmentation/
    │                   ├── train.txt
    │                   └── val.txt
    └── LIP/
          ├── train_images/
          ├── train_segmentations/
          ├── val_images/
          ├── val_segmentations/
          ├── train_id.txt
          └── val_id.txt

Model download

Name mIoU Pixel Accuracy Model
COCOStuff-27 16.19 44.52 Google Drive
COCOStuff-171 11.93 34.32 Google Drive
COCO-80 12.69 64.31 Google Drive
Cityscapes 16.83 77.92 Google Drive
Pascal-VOC 37.15 83.59 Google Drive
LIP-5 25.16 65.76 Google Drive
LIP-16 15.49 60.08 Google Drive
LIP-19 12.24 42.52 Google Drive

Train and Evaluate Our Method

To train and evaluate our method on different datasets under desired granularity level, please follow the instructions here.

Citation

If you find our work useful in your research, please consider citing:

@article{yin2021transfgu,
  title={TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation},
  author={Zhaoyun, Yin and Pichao, Wang and Fan, Wang and Xianzhe, Xu and Hanling, Zhang and Hao, Li and Rong, Jin},
  journal={arXiv preprint arXiv:2112.01515},
  year={2021}
}

LICENSE

The code is released under the MIT license.

Copyright

Copyright (C) 2010-2021 Alibaba Group Holding Limited.

Owner
DamoCV
CV team of DAMO academy
DamoCV
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023