This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Overview

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers

This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers." There are three subdirectories in this repository, the contents of which are described below. This code was tested using PyTorch 1.7.

Synthetic Pairs Matrix

This part of the repository is for running the synthetic pairs matrix experiments in the paper. Here are the commands to run all of the experiments in the paper:

Pairs Matrix 1

python main.py --exp_name pairs_matrix1 --pattern_dir pairs_matrix1 --imgnet_augment

Pairs Matrix 2

python main.py --exp_name pairs_matrix2 --pattern_dir pairs_matrix2 --imgnet_augment

Color Deviation

python main.py --exp_name color_deviation_(your epsilon here) --pattern_dir pairs_matrix1 --hue_perturb blue_circle --hue_perturb_val (your epsilon here) --imgnet_augment

Color Overlap (pattern dirs are already predefined for these. Some overlap values are included, but if you would like to use different ones, you must create them yourself.)

python main.py --exp_name color_overlap_(your overlap here) --pattern_dir color_overlap_(your overlap here) --imgnet_augment

Predictivity

python3 main.py --exp_name predictivity_(your predictivity here) --pattern_dir pairs_matrix1 --pred_drop blue --pred_drop_val (your predictivity here)

When you run one of these experiments, datasets will be created and models trained. Datasets will get created and stored in the directory ./data/exp_name, trained models will get stored in ./models/exp_name, and results will appear in ./results/exp_name. When the experiment is done, there should be a file called master.csv in the directory ./results/exp_name which will contain information including each feature's average preference over the course of the experiment, pixel count, and name. A complete list of commands to generate all data in the paper can be found in the commands.sh file in the pairs_matrix_experiments subdirectory. The training script is adapted from the torchvision training script: https://github.com/pytorch/examples/blob/master/imagenet/main.py.

Texture Bias

Stimuli and helper code is used from the open-sourced code of the paper "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness" (https://github.com/rgeirhos/texture-vs-shape).

To run the experiments from our paper with an ImageNet-trained ResNet-50, you can do the following:

Normal Texture Bias

python main.py

Varying degrees of background interpolation to white (use 0 for completely white, 1 for texture background).

python main.py --bg_interp (your interpolation here)

Resizing

python main.py --bg_interp 0 --size (your fraction of the object size here)

Landscapes

python main.py --bg_interp 0 --landscape

Only full shapes

python main.py --only_complete

Only full shapes masked with masked/interpolated background

python main.py --only_complete --bg_interp (your interpolation here)

A complete list of commands to generate all of the texture bias data from our paper can be found in the commands.sh file in the texture_bias subdirectory.

Excessive Invariance

Running these experiments is a bit more involved. A complete list of commands you must run to reproduce all data and graphs found in the paper can be found in the commands.sh file in the excessive_invariance subdirectory. Comments in the file describe what each step represents.

Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022