Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

Overview

A Differentiable Recurrent Surface for Asynchronous Event-Based Data

Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"
Authors: Marco Cannici, Marco Ciccone, Andrea Romanoni, Matteo Matteucci

Citing:

If you use Matrix-LSTM for research, please cite our accompanying ECCV2020 paper:

@InProceedings{Cannici_2020_ECCV,
    author = {Cannici, Marco and Ciccone, Marco and Romanoni, Andrea and Matteucci, Matteo},
    title = {A Differentiable Recurrent Surface for Asynchronous Event-Based Data},
    booktitle = {The European Conference on Computer Vision (ECCV)},
    month = {August},
    year = {2020}
}

Project Structure

The code is organized in two folders:

  • classification/ containing PyTorch code for N-Cars and N-Caltech101 experiments
  • opticalflow/ containing TensorFlow code for MVSEC experiments (code based on EV-FlowNet repository)

Note: the naming convention used within the code is not exactly the same as the one used in the paper. In particular, the groupByPixel operation is named group_rf_bounded in the code (i.e., group by receptive field, since it also supports receptive fields larger than 1x1), while the groupByTime operation is named intervals_to_batch.

Requirements

We provide a Dockerfile for both codebases in order to replicate the environments we used to run the paper experiments. In order to build and run the containers, the following packages are required:

  • Docker CE - version 18.09.0 (build 4d60db4)
  • NVIDIA Docker - version 2.0

If you have installed the latest version, you may need to modify the .sh files substituting:

  • nvidia-docker run with docker run
  • --runtime=nvidia with --gpus=all

You can verify which command works for you by running:

  • (scripts default) nvidia-docker run -ti --rm --runtime=nvidia -t nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 nvidia-smi
  • docker run -ti --rm --gpus=all -t nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 nvidia-smi

You should be able to see the output of nvidia-smi

Run Experiments

Details on how to run experiments are provided in separate README files contained in the classification and optical flow sub-folders:

Note: using Docker is not mandatory, but it will allow you to automate the process of installing dependencies and building CUDA kernels, all within a safe environment that won't modify any of your previous installations. Please, read the Dockerfile and requirements.yml files contained inside the <classification or opticalflow>/docker/ subfolders if you want to perform a standard conda/pip installation (you just need to manually run all RUN commands).

Owner
Marco Cannici
Marco Cannici
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023