On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

Overview

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

This repository contains the evaluation code and alternative pseudo ground truth poses as used in our ICCV 2021 paper.

video overview

Pseudo Ground Truth for 7Scenes and 12Scenes

We generated alternative SfM-based pseudo ground truth (pGT) using Colmap to supplement the original D-SLAM-based pseudo ground truth of 7Scenes and 12Scenes.

Pose Files

Please find our SfM pose files in the folder pgt. We separated pGT files wrt datasets, individual scenes and the test/training split. Each file contains one line per image that follows the format:

rgb_file qw qx qy qz tx ty tz f

Entries q and t represent the pose as quaternion and translation vector. The pose maps world coordinates to camera coordinates, i.e. p_cam = R(q) p_world + t. This is the same convention used by Colmap. Entry f represents the focal length of the RGB sensor. f was re-estimated by COLMAP and can differ slightly per scene.

We also provide the original D-SLAM pseudo ground truth in this format to be used with our evaluation code below.

Full Reconstructions

The Colmap 3D models are available here:

Note that the Google Drive folder that currently hosts the reconstructions has a daily download limit. We are currently looking into alternative hosting options.

License Information

Since the 3D models and pose files are derived from the original datasets, they are released under the same licences as the 7Scenes and 12Scenes datasets. Before using the datasets, please check the licenses (see the websites of the datasets or the README.md files that come with the 3D models).

Evaluation Code

The main results of our paper can be reproduced using evaluate_estimates.py. The script calculates either the pose error (max of rotation and translation error) or the DCRE error (dense reprojection error). The script prints the recall at a custom threshold to the console, and produces a cumulative error plot as a PDF file.

As input, the script expects a configuration file that points to estimated poses of potentially multiple algorithms and to the pseudo ground truth that these estimates should be compared to. We provide estimated poses of all methods shown in our paper (ActiveSearch, HLoc, R2D2 and DSAC*) in the folder estimates.
These pose files follow the same format as our pGT files described previously, but omit the final f entry.

Furthermore, we provide example config files corresponding to the main experiments in our paper.

Call python evaluate_estimates.py --help for all available options.

For evaluation on 7Scenes, using our SfM pGT, call:

python evaluate_estimates.py config_7scenes_sfm_pgt.json

This produces a new file config_7scenes_sfm_pgt_pose_err.pdf:

For the corresponding plot using the original D-SLAM pGT, call:

python evaluate_estimates.py config_7scenes_dslam_pgt.json

Interpreting the Results

The plots above show very different rankings across methods. Yet, as we discuss in our paper, both plots are valid since no version of the pGT is clearly superior to the other. Furthermore, it appears plausible that any version of pGT is only trustworthy up to a certain accuracy threshold. However, it is non-obvious and currently unknown, how to determine such a trust threshold. We thus strongly discourage to draw any conclusions (beyond that a method might be overfitting to the imperfections of the pseudo ground truth) from the smaller thresholds alone.

We advise to always evaluate methods under both versions of the pGT, and to show both evaluation results in juxtaposition unless specific reasons are given why one version of the pGT is preferred.

DCRE Computation

DCRE computation is triggered with the option --error_type dcre_max or --error_type dcre_mean (see our paper for details). DCRE needs access to the original 7Scenes or 12Scenes data as it requires depth maps. We provide two utility scripts, setup_7scenes.py and setup_12scenes.py, that will download and unpack the associated datasets. Make sure to check each datasets license, via the links above, before downloading and using them.

Note I: The original depth files of 7Scenes are not calibrated, but the DCRE requires calibrated files. The setup script will apply the Kinect calibration parameters found here to register depth to RGB. This essentially involves re-rendering the depth maps which is implemented in native Python and takes a long time due to the large frame count in 7Scenes (several hours). However, this step has to be done only once.

Note II: The DCRE computation by evaluate_estimates.py is implemented on the GPU and reasonably fast. However, due to the large frame count in 7Scenes it can still take considerable time. The parameter --error_max_images limits the max. number of frames used to calculate recall and cumulative errors. The default value of 1000 provides a good tradeoff between accuracy and speed. Use --error_max_images -1 to use all images which is most accurate but slow for 7Scenes.

Uploading Your Method's Estimates

We are happy to include updated evaluation results or evaluation results of new methods in this repository. This would enable easy comparisons across methods with unified evaluation code, as we progress in the field.

If you want your results included, please provide estimates of your method under both pGT versions via a pull request. Please add your estimation files to a custom sub-folder under èstimates_external, following our pose file convention described above. We would also ask that you provide a text file that links your results to a publication or tech report, or contains a description of how you obtained these results.

estimates_external
├── someone_elses_method
└── your_method
    ├── info_your_method.txt
    ├── dslam
    │   ├── 7scenes
    │   │   ├── chess_your_method.txt
    │   │   ├── fire_your_method.txt
    │   │   ├── ...
    │   └── 12scenes
    │       ├── ...
    └── sfm
        ├── ...

Dependencies

This code requires the following python packages, and we tested it with the package versions in brackets

pytorch (1.6.0)
opencv (3.4.2)
scikit-image (0.16.2)

The repository contains an environment.yml for the use with Conda:

conda env create -f environment.yml
conda activate pgt

License Information

Our evaluation code and data utility scripts are based on parts of DSAC*, and we provide our code under the same BSD-3 license.

Citation

If you are using either the evaluation code or the Structure-from-Motion pseudo GT for the 7Scenes or 12Scenes datasets, please cite the following work:

@InProceedings{Brachmann2021ICCV,
    author = {Brachmann, Eric and Humenberger, Martin and Rother, Carsten and Sattler, Torsten},
    title = {{On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization}},
    booktitle = {International Conference on Computer Vision (ICCV)},
    year = {2021},
}
Owner
Torsten Sattler
I am a senior researcher at CIIRC, the Czech Institute of Informatics, Robotics and Cybernetics, building my own research group.
Torsten Sattler
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022