On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

Overview

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

This repository contains the evaluation code and alternative pseudo ground truth poses as used in our ICCV 2021 paper.

video overview

Pseudo Ground Truth for 7Scenes and 12Scenes

We generated alternative SfM-based pseudo ground truth (pGT) using Colmap to supplement the original D-SLAM-based pseudo ground truth of 7Scenes and 12Scenes.

Pose Files

Please find our SfM pose files in the folder pgt. We separated pGT files wrt datasets, individual scenes and the test/training split. Each file contains one line per image that follows the format:

rgb_file qw qx qy qz tx ty tz f

Entries q and t represent the pose as quaternion and translation vector. The pose maps world coordinates to camera coordinates, i.e. p_cam = R(q) p_world + t. This is the same convention used by Colmap. Entry f represents the focal length of the RGB sensor. f was re-estimated by COLMAP and can differ slightly per scene.

We also provide the original D-SLAM pseudo ground truth in this format to be used with our evaluation code below.

Full Reconstructions

The Colmap 3D models are available here:

Note that the Google Drive folder that currently hosts the reconstructions has a daily download limit. We are currently looking into alternative hosting options.

License Information

Since the 3D models and pose files are derived from the original datasets, they are released under the same licences as the 7Scenes and 12Scenes datasets. Before using the datasets, please check the licenses (see the websites of the datasets or the README.md files that come with the 3D models).

Evaluation Code

The main results of our paper can be reproduced using evaluate_estimates.py. The script calculates either the pose error (max of rotation and translation error) or the DCRE error (dense reprojection error). The script prints the recall at a custom threshold to the console, and produces a cumulative error plot as a PDF file.

As input, the script expects a configuration file that points to estimated poses of potentially multiple algorithms and to the pseudo ground truth that these estimates should be compared to. We provide estimated poses of all methods shown in our paper (ActiveSearch, HLoc, R2D2 and DSAC*) in the folder estimates.
These pose files follow the same format as our pGT files described previously, but omit the final f entry.

Furthermore, we provide example config files corresponding to the main experiments in our paper.

Call python evaluate_estimates.py --help for all available options.

For evaluation on 7Scenes, using our SfM pGT, call:

python evaluate_estimates.py config_7scenes_sfm_pgt.json

This produces a new file config_7scenes_sfm_pgt_pose_err.pdf:

For the corresponding plot using the original D-SLAM pGT, call:

python evaluate_estimates.py config_7scenes_dslam_pgt.json

Interpreting the Results

The plots above show very different rankings across methods. Yet, as we discuss in our paper, both plots are valid since no version of the pGT is clearly superior to the other. Furthermore, it appears plausible that any version of pGT is only trustworthy up to a certain accuracy threshold. However, it is non-obvious and currently unknown, how to determine such a trust threshold. We thus strongly discourage to draw any conclusions (beyond that a method might be overfitting to the imperfections of the pseudo ground truth) from the smaller thresholds alone.

We advise to always evaluate methods under both versions of the pGT, and to show both evaluation results in juxtaposition unless specific reasons are given why one version of the pGT is preferred.

DCRE Computation

DCRE computation is triggered with the option --error_type dcre_max or --error_type dcre_mean (see our paper for details). DCRE needs access to the original 7Scenes or 12Scenes data as it requires depth maps. We provide two utility scripts, setup_7scenes.py and setup_12scenes.py, that will download and unpack the associated datasets. Make sure to check each datasets license, via the links above, before downloading and using them.

Note I: The original depth files of 7Scenes are not calibrated, but the DCRE requires calibrated files. The setup script will apply the Kinect calibration parameters found here to register depth to RGB. This essentially involves re-rendering the depth maps which is implemented in native Python and takes a long time due to the large frame count in 7Scenes (several hours). However, this step has to be done only once.

Note II: The DCRE computation by evaluate_estimates.py is implemented on the GPU and reasonably fast. However, due to the large frame count in 7Scenes it can still take considerable time. The parameter --error_max_images limits the max. number of frames used to calculate recall and cumulative errors. The default value of 1000 provides a good tradeoff between accuracy and speed. Use --error_max_images -1 to use all images which is most accurate but slow for 7Scenes.

Uploading Your Method's Estimates

We are happy to include updated evaluation results or evaluation results of new methods in this repository. This would enable easy comparisons across methods with unified evaluation code, as we progress in the field.

If you want your results included, please provide estimates of your method under both pGT versions via a pull request. Please add your estimation files to a custom sub-folder under èstimates_external, following our pose file convention described above. We would also ask that you provide a text file that links your results to a publication or tech report, or contains a description of how you obtained these results.

estimates_external
├── someone_elses_method
└── your_method
    ├── info_your_method.txt
    ├── dslam
    │   ├── 7scenes
    │   │   ├── chess_your_method.txt
    │   │   ├── fire_your_method.txt
    │   │   ├── ...
    │   └── 12scenes
    │       ├── ...
    └── sfm
        ├── ...

Dependencies

This code requires the following python packages, and we tested it with the package versions in brackets

pytorch (1.6.0)
opencv (3.4.2)
scikit-image (0.16.2)

The repository contains an environment.yml for the use with Conda:

conda env create -f environment.yml
conda activate pgt

License Information

Our evaluation code and data utility scripts are based on parts of DSAC*, and we provide our code under the same BSD-3 license.

Citation

If you are using either the evaluation code or the Structure-from-Motion pseudo GT for the 7Scenes or 12Scenes datasets, please cite the following work:

@InProceedings{Brachmann2021ICCV,
    author = {Brachmann, Eric and Humenberger, Martin and Rother, Carsten and Sattler, Torsten},
    title = {{On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization}},
    booktitle = {International Conference on Computer Vision (ICCV)},
    year = {2021},
}
Owner
Torsten Sattler
I am a senior researcher at CIIRC, the Czech Institute of Informatics, Robotics and Cybernetics, building my own research group.
Torsten Sattler
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022