Pytorch implementation of XRD spectral identification from COD database

Overview

XRDidentifier

Pytorch implementation of XRD spectral identification from COD database.
Details will be explained in the paper to be submitted to NeurIPS 2021 Workshop Machine Learning and the Physical Sciences (https://ml4physicalsciences.github.io/2021/).

Features

expert model

1D-CNN (1D-RegNet) + Hierarchical Deep metric learning (AdaCos + Angular Penalty Softmax Loss)

mixture of experts

73 expert models tailered to general chemical elements with sparsely-gated layer

data augmentation

Physics-informed data augmentation

Requirements

  • Python 3.6
  • PyTorch 1.4
  • pymatgen
  • scikit-learn

Dataset Construction

In the paper, I used ICSD dataset, but it is forbidden to redistribute the CIFs followed by their license. I will write the CIF dataset construction method using COD instead.

1. download cif files from COD

Go to the COD homepage, search and download the cif URL list.
http://www.crystallography.net/cod/search.html

python3 download_cif_from_cod.py --input ./COD-selection.txt --output ./cif

2. convert cif into XRD spectra

First, check the cif files. (some files are broken or physically meaningless)

python3 read_cif.py --input ./cif --output ./lithium_datasets.pkl

lithium_datasets.pkl will be created.

Second, convert the checked results into XRD spectra database.

python3 convertXRDspectra.py --input ./lithium_datasets.pkl --batch 8 --n_aug 5

XRD_epoch5.pkl will be created.

Train expert models

python3 train_expert.py --input ./XRD_epoch5.pkl --output learning_curve.csv --batch 16 --n_epoch 100

Output data

  • Trained model -> regnet1d_adacos_epoch100.pt
  • Learning curve -> learning_curve.csv
  • Correspondence between numerical int label and crystal names -> material_labels.csv

Train Mixture-of-Experts model

You need to prepare both pre-trained expert models and pickled single XRD spectra files.
You should store the pre-trained expert models in './pretrained' folder, and the pickled single XRD spectra files in './pickles' folder.
The number of experts are automatically adjusted according to the number of the pretrained expert models.

python3 train_moe.py --data_path ./pickles --save_model moe.pt --batch 64 --epoch 100

Output data

  • Trained model -> moe.pt
  • Learning curve -> moe.csv

Citation

Papers

Implementation

Owner
Masaki Adachi
DPhil student in Machine Learning @ University of Oxford
Masaki Adachi
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022