An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Overview

title

Pi Zero Bikecomputer

An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+

https://github.com/hishizuka/pizero_bikecomputer

News

  • 2021/4/18 Please reinstall pyqtgraph when using python3-pyqt5 in Raspberry Pi OS (skip check if using).
  • 2021/4/3 Please reinstall openant and pyqtgraph because both libraries are re-forked.
$ sudo pip3 uninstall pyqtgraph
$ sudo pip3 install git+https://github.com/hishizuka/pyqtgraph.git
$ sudo pip3 uninstall openant
$ sudo pip3 install git+https://github.com/hishizuka/openant.git

Table of Contents

Abstract

Pi Zero Bikecomputer is a GPS and ANT+ bike computer based on Raspberry Pi Zero(W, WH). This is the first DIY project in the world integrated with necesarry hardwares and softwares for modern bike computer. It measures and records position(GPS), ANT+ sensor(speed/cadence/power) and I2C sensor(pressure/temperature/accelerometer, etc). It also displays these values, even maps and courses in real-time. In addition, it write out log into .fit format file.

In this project, Pi Zero Bikecomputer got basic functions needed for bike computers. Next target is to add new functions which existing products do not have!

You will enjoy both cycling and the maker movement with Pi Zero Bikecomputer!

Here is detail articles in Japanese.

Daily update at twitter (@pi0bikecomputer), and my cycling activity at STRAVA.

system-01-202106

system-02

Features

  • Easy to make

    • Use modules available at famous Maker stores.
    • Assemble in Raspberry Pi ecosystems.
    • Install with basic commands such as apt-get install, pip and git command.
  • Customization

    • Need only modules you want to use. Pi Zero Bikecomputer detects your modules.
  • Easy to develop

    • Pi Zero Bikecomputer uses same libraries as for standard Linux.
    • So, you can run in cross platform environments such as Raspberry Pi OS, some Linux, macOS and Windows.
  • Good balance between battery life and performance

Specs

Some functions depend on your parts.

General

Specs Detail Note
Logging Yes See as below
Sensors Yes See as below
Positioning Yes A GPS module is required. See as below.
GUI Yes See as below
Wifi Yes Built-in wifi
Battery life(Reference) 18h with 3100mAh mobile battery(Garmin Charge Power Pack) and MIP Reflective color LCD.

Logging

Specs Detail Note
Stopwatch Yes Timer, Lap, Lap timer
Lap Yes [Total, Lap ave, Pre lap ave] x [HR, Speed, Cadence, Power]
Cumulative value Yes [Total, Lap, Pre lap] x [Distance, Works, Ascent, Descent]
Elapsed time Yes Elapsed time, average speed(=distance/elapsed time), gained time from average speed 15km/h(for brevet)
Auto stop Yes Automatic stop at speeds below 4km/h(configurable), or in the state of the acceleration sensor when calculating the speed by GPS alone
Recording insterval 1s Smart recording is not supported.
Resume Yes
Output .fit log file Yes
Upload to STRAVA Yes
Live sending Yes But I can't find a good dashboard service like as Garmin LiveTrack

Sensors

USB dongle is required if using ANT+ sensors.

Specs Detail Note
ANT+ heartrate sensor Yes
ANT+ speed sensor Yes
ANT+ cadence sensor Yes
ANT+ speed&cadence sensor Yes
ANT+ powermeter Yes Calibration is not supported.
ANT+ LIGHT Yes Bontrager Flare RT only.
ANT+ Control Yes Garmin Edge Remote only.
Bluetooth sensors No
Barometric altimeter Yes An I2c sensor(pressure, temperature) is required.
Accelerometer Yes An I2c sensor is required.
Magnetometer Yes An I2c sensor is required.
Light sensor Yes An I2c sensor is required. For auto backlight and lighting.

Positioning

Specs Detail Note
Map Yes Support map tile format like OSM. So, offline map is available with local caches.
Course on the map Yes A course file(.tcx) is required.
Course profile Yes A course file(.tcx) is required.
Cuesheet Yes Use course points included in course files.
Search Route Yes Google Directions API
  • Map with Toner Map
    • Very useful with 2 colors displays (black and white).
  • Map with custimized Mapbox
    • Use 8 colors suitable for MIP Reflective color LCD.
  • Course profile

GUI

Specs Detail Note
Basic page(values only) Yes
Graph Yes Altitude and performance(HR, PWR)
Customize data pages Yes With layout.yaml
ANT+ pairing Yes
Adjust wheel size Yes Set once, store values
Adjust altitude Yes Auto adjustments can be made only once, if on the course.
Language localization Yes Font and translation file of items are required.
No GUI option Yes headless mode
  • Performance graph
  • Language localization(Japanese)

Experimental functions

ANT+ multiscan

it displays three of the people around you in the order in which you caught sensors using ANT+ continuous scanning mode.

Comparison with other bike computers

  • 200km ride with Garmin Edge 830 and Pizero Bikecomputer (strava activity)

  • title-03.png

Items Edge830 Pi Zero Bikecomputer
Distance 193.8 km 194.3 km
Work 3,896 kJ 3,929 kJ
Moving time 9:12 9:04
Total Ascent 2,496 m 2,569 m

Hardware Installation

See hardware_installation.md.

Software Installation

See software_installation.md.

Q&A

License

This repository is available under the GNU General Public License v3.0

Author

hishizuka (@pi0bikecomputer at twitter, pizero bikecomputer at STRAVA)

Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022