This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

Related tags

Deep LearningMAGNN
Overview

1 MAGNN

This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting.

1.1 The framework of MAGNN

framework

2 Prerequisites

  • Python 3.6.12
  • PyTorch 1.0.0
  • math, sklearn, numpy

3 Datasets

To evaluate the performance of MAGNN, we conduct experiments on four public benchmark datasets:Solar-Energy, Traffic, Electricity, and Exchange-Rate.

3.1 Solar-Energy

This dataset contains the collected solar power from the National Renewable Energy Laboratory, which is sampled every 10 minutes from 137 PV plants in Alabama State in 2007.

3.2 Traffic

This dataset contains the road occupancy rates (between 0 and 1) from the California Department of Transportation, which is hourly aggregated from 862 sensors in San Francisco Bay Area from 2015 to 2016.

3.3 Electricity

This dataset contains the electricity consumption from the UCI Machine Learning Repository, which is hourly aggregated from 321 clients from 2012 to 2014.

3.4 Exchange-Rate

This dataset contains the exchange rates of eight countries, which is sampled daily from 1990 to 2016.

4 Running

4.1 Install all dependencies listed in prerequisites

4.2 Download the dataset

4.3 Hyper-parameters search with NNI

# Hyper-parameters search with NNI
 nnictl create --config config.yml --port 8080

4.4 Training

# Train on Solar-Energy
CUDA_LAUNCH_BLOCKING=1 python train.py --save ./model-solar-1.pt --data solar-energy/solar-energy.txt --num_nodes 8 --batch_size 4 --epochs 50 --horizon 3
# Train on Traffic
CUDA_LAUNCH_BLOCKING=1 python train.py --save ./model-traffic-3.pt --data traffic/traffic.txt --num_nodes 8 --batch_size 4 --epochs 50 --horizon 3
# Train on Electricity
CUDA_LAUNCH_BLOCKING=1 python train.py --save ./model-electricity-3.pt --data electricity/electricity.txt --num_nodes 8 --batch_size 4 --epochs 50 --horizon 3
# Train on Exchange-Rate
CUDA_LAUNCH_BLOCKING=1 python train.py --save ./model-exchange-4.pt --data exchange_rate/exchange_rate.txt --num_nodes 8 --batch_size 4 --epochs 50 --horizon 3

5 Citation

Please cite the following paper if you use the code in your work:

@Inproceedings{616B,
  title={Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting.},
  author={Ling Chen, Donghui Chen, Zongjiang Shang, Youdong Zhang, Bo Wen, and Chenghu Yang.},
  booktitle={},
  year={2021}
}
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022