Multi-agent reinforcement learning algorithm and environment

Overview

Multi-agent reinforcement learning algorithm and environment

[en/cn]

Pytorch implements multi-agent reinforcement learning algorithms including IQL, QMIX, VDN, COMA, QTRAN (QTRAN-Base and QTRAN-Alt), MAVEN, CommNet, DYMA-Cl, and G2ANet, which are among the most advanced MARL algorithms. SMAC is a decentralized micromanagement scenario for StarCraft II.

Project Address: https://github.com/starry-sky6688/StarCraft

Run:

python main.py --map=3m --alg=qmix

Run directly, and then the algorithm will start training on the map.

MRL environment configuration Starcraft II environment: https://github.com/oxwhirl/smac

Install StarCraft II

SMAC based on the complete game of StarCraft II (version >= 3.16.1). To install the game, follow the command below.

  1. Linux

Please use [blizzard repository] (https://github.com/Blizzard/s2client-proto#downloads) download the Linux version of starcraft II. By default, the game should be in a directory. This can be changed by setting environment variables. ~/StarCraftII/SC2PATH

  1. MacOS/Windows

From Battle.net, please install [starcraft II] (https://starcraft2.com/zh-tw/). The free starter version is also available. If you use the default installation location, PySC2 will find the latest binaries. Otherwise, like the Linux version, you need to set the environment variables with the correct location of the game. SC2PATH

SMAC map

SMAC consists of a number of battle scenarios with pre-configured maps. Before SMAC can be used, these maps need to be downloaded into the StarCraft II directory. Maps

Download the [SMAC map] (https://github.com/oxwhirl/smac/releases/download/v0.1-beta1/SMAC_Maps.zip) and unzip it to your directory. If you have SMAC installed with Git, simply copy the directory from the directory to the directory.

Create a new folder Maps under the root directory

Save the file to the StarCraft Maps folder.

run

python main.py --map=3m --alg=qmix

Environment configuration, feel a bit of a problem, actually change the python folder in the address, do not need to configure any environment variables. Error file, click to find C: change to F: can be.

result

Win 8 times on average, run 3m independently --difficulty=7(VeryHard)

MADDPG

Git are not running, found on the test for a long time, on the basis of the https://github.com/starry-sky6688/MADDPG changed, run successfully.

multi-agent environment

MPE Installation Method 1:

cd into the root directory and type pip install -e .

2 installation method 2: https://www.pettingzoo.ml/mpe

pip install pettingzoo[mpe]

Requirements

Python = 3.6.5 Multi-Agent Particle Environment(MPE) The torch = 1.1.0

result

python main.py --scenario-name=simple_tag --evaluate-episodes=10

Py --scenario-name=simple_tag --evaluate-episodes=10

Modify the 'simple_tag' replacement environment.

result

In this task, two blue agents gain a reward by minimizing their closest approach to a green landmark (only one needs to get close enough for the best reward), while maximizing the distance between a red opponent and the green landmark. Red opponents are rewarded by minimizing their distance from green landmarks; However, in any given trial, it doesn't know which landmark is green, so it must follow the blue proxy. Therefore, the blue agent should learn to trick the red agent by overwriting two landmarks.

Owner
万鲲鹏
万鲲鹏
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022