Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Overview

Language Emergence in Multi Agent Dialog

Code for the Paper

Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M. F. Moura, Stefan Lee, Dhruv Batra EMNLP 2017 (Best Short Paper)

If you find this code useful, please consider citing the original work by authors:

@inproceedings{visdial,
  title = {{N}atural {L}anguage {D}oes {N}ot {E}merge '{N}aturally' in {M}ulti-{A}gent {D}ialog},
  author = {Satwik Kottur and Jos\'e M.F. Moura and Stefan Lee and Dhruv Batra},
  journal = {CoRR},
  volume = {abs/1706.08502},
  year = {2017}
}

Introduction

This paper focuses on proving that the emergence of language by agent-dialogs is not necessarily compositional and human interpretable. To demonstrate this fact, the paper uses a Image Guessing Game "Task and Talk" as a testbed. The game comprises of two bots, a questioner and answerer.

Answerer has an image attributes, as shown in figure. Questioner cannot see the image, and has a task of finding two attributes of the image (color, shape, style). Answerer does not know the task. Multiple rounds of q/a dialogs occur, after which the questioner has to guess the attributes. Reward to both bots is given on basis of prediction of questioner.

Task And Talk

Further, the paper discusses the ways to make the grounded language more compositional and human interpretable by restrictions on how two agents may communicate.

Setup

This repository is only compatible with Python3, as ParlAI imposes this restriction; it requires Python3.

  1. Follow instructions under Installing ParlAI section from ParlAI site.
  2. Follow instructions outlined on PyTorch Homepage for installing PyTorch (Python3).
  3. tqdm is used for providing progress bars, which can be downloaded via pip3.

Dataset Generation

Described in Section 2 and Figure 1 of paper. Synthetic dataset of shape attributes is generated using data/generate_data.py script. To generate the dataset, simply execute:

cd data
python3 generate_data.py
cd ..

This will create data/synthetic_dataset.json, with 80% training data (312 samples) and rest validation data (72 samples). Save path, size of dataset and split ratio can be changed through command line. For more information:

python3 generate_data.py --help

Dataset Schema

{
    "attributes": ["color", "shape", "style"],
    "properties": {
        "color": ["red", "green", "blue", "purple"],
        "shape": ["square", "triangle", "circle", "star"],
        "style": ["dotted", "solid", "filled", "dashed"]
    },
    "split_data": {
        "train": [ ["red", "square", "solid"], ["color2", "shape2", "style2"] ],
        "val": [ ["green", "star", "dashed"], ["color2", "shape2", "style2"] ]
    },
    "task_defn": [ [0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1] ]
}

A custom Pytorch Dataset class is written in dataloader.py which ingests this dataset and provides random batch / complete data while training and validation.

Training

Training happens through train.py, which iteratively carries out multiple rounds of dialog in each episode, between our ParlAI Agents - QBot and ABot, both placed in a ParlAI World. The dialog is completely cooperative - both bots receive same reward after each episode.

This script prints the cumulative reward, training accuracy and validation accuracy after fixed number of iterations. World checkpoints are saved after regular intervals as well.

Training is controlled by various options, which can be passed through command line. All of them have suitable default values set in options.py, although they can be tinkered easily. They can also be viewed as:

python3 train.py --help   # view command line args (you need not change "Main ParlAI Arguments")

Questioner and Answerer bot classes are defined in bots.py and World is defined in world.py. Paper describes three configurations for training:

Overcomplete Vocabulary

Described in Section 4.1 of paper. Both QBot and Abot will have vocabulary size equal to number of possible objects (64).

python3 train.py --data-path /path/to/json --q-out-vocab 64 --a-out-vocab 64

Attribute-Value Vocabulary

Described in Section 4.2 of paper. Both QBot will have vocab size 3 (color, shape, style) and Abot will have vocabulary size equal to number of possible attribute values (4 * 3).

python3 train.py --data-path /path/to/json --q-out-vocab 3 --a-out-vocab 12

Memoryless ABot, Minimal Vocabulary (best)

Described in Section 4.3 of paper. Both QBot will have vocab size 3 (color, shape, style) and Abot will have vocabulary size equal to number of possible values per attribute (4).

python3 train.py --q-out-vocab 3 --a-out-vocab 4 --data-path /path/to/json --memoryless-abot

Checkpoints would be saved by default in checkpoints directory every 100 epochs. Be default, CPU is used for training. Include --use-gpu in command-line to train using GPU.

Refer script docstring and inline comments in train.py for understanding of execution.

Evaluation

Saved world checkpoints can be evaluated using the evaluate.py script. Besides evaluation, the dialog between QBot and ABot for all examples can be saved in JSON format. For evaluation:

python3 evaluate.py --load-path /path/to/pth/checkpoint

Save the conversation of bots by providing --save-conv-path argument. For more information:

python3 evaluate.py --help

Evaluation script reports training and validation accuracies of the world. Separate accuracies for first attribute match, second attribute match, both match and atleast one match are reported.

Sample Conversation

Im: ['purple', 'triangle', 'filled'] -  Task: ['shape', 'color']
    Q1: X    A1: 2
    Q2: Y    A2: 0
    GT: ['triangle', 'purple']  Pred: ['triangle', 'purple']

Pretrained World Checkpoint

Best performing world checkpoint has been released here, along with details to reconstruct the world object using this checkpoint.

Reported metrics:

Overall accuracy [train]: 96.47 (first: 97.76, second: 98.72, atleast_one: 100.00)
Overall accuracy [val]: 98.61 (first: 98.61, second: 100.00, atleast_one: 100.00)

TODO: Visualizing evolution chart - showing emergence of grounded language.

References

  1. Satwik Kottur, José M.F.Moura, Stefan Lee, Dhruv Batra. Natural Language Does Not Emerge Naturally in Multi-Agent Dialog. EMNLP 2017. [arxiv]
  2. Alexander H. Miller, Will Feng, Adam Fisch, Jiasen Lu, Dhruv Batra, Antoine Bordes, Devi Parikh, Jason Weston. ParlAI: A Dialog Research Software Platform. 2017. [arxiv]
  3. Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F. Moura, Devi Parikh and Dhruv Batra. Visual Dialog. CVPR 2017. [arxiv]
  4. Abhishek Das, Satwik Kottur, José M.F. Moura, Stefan Lee, and Dhruv Batra. Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning. ICCV 2017. [arxiv]
  5. ParlAI Docs. [http://parl.ai/static/docs/index.html]
  6. PyTorch Docs. [http://pytorch.org/docs/master]

Standing on the Shoulders of Giants

The ease of implementing this paper using ParlAI framework is heavy accredited to the original source code released by authors of this paper. [batra-mlp-lab/lang-emerge]

License

BSD

You might also like...
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Oriented Response Networks, in CVPR 2017
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

Improving Convolutional Networks via Attention Transfer (ICLR 2017)
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

🌈 PyTorch Implementation for EMNLP'21 Findings
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Releases(v1.0)
  • v1.0(Nov 10, 2017)

    Attached checkpoint was the best one when the following script was executed at this commit:

    python3 train.py --use-gpu --memoryless-abot --num-epochs 99999
    

    Evaluation of the checkpoint:

    python3 evaluate.py --load-path world_best.pth 
    

    Reported metrics:

    Overall accuracy [train]: 96.47 (first: 97.76, second: 98.72, atleast_one: 100.00)
    Overall accuracy [val]: 98.61 (first: 98.61, second: 100.00, atleast_one: 100.00)
    

    Minimal snippet to reconstruct the world using this checkpoint:

    import torch
    
    from bots import Questioner, Answerer
    from world import QAWorld
    
    world_dict = torch.load('path/to/checkpoint.pth')
    questioner = Questioner(world_dict['opt'])
    answerer = Answerer(world_dict['opt'])
    if world_dict['opt'].get('use_gpu'):
        questioner, answerer = questioner.cuda(), answerer.cuda()
    
    questioner.load_state_dict(world_dict['qbot'])
    answerer.load_state_dict(world_dict['abot'])
    world = QAWorld(world_dict['opt'], questioner, answerer)
    
    Source code(tar.gz)
    Source code(zip)
    world_best.pth(679.17 KB)
Owner
Karan Desai
Karan Desai
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022