Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Overview

Language Emergence in Multi Agent Dialog

Code for the Paper

Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M. F. Moura, Stefan Lee, Dhruv Batra EMNLP 2017 (Best Short Paper)

If you find this code useful, please consider citing the original work by authors:

@inproceedings{visdial,
  title = {{N}atural {L}anguage {D}oes {N}ot {E}merge '{N}aturally' in {M}ulti-{A}gent {D}ialog},
  author = {Satwik Kottur and Jos\'e M.F. Moura and Stefan Lee and Dhruv Batra},
  journal = {CoRR},
  volume = {abs/1706.08502},
  year = {2017}
}

Introduction

This paper focuses on proving that the emergence of language by agent-dialogs is not necessarily compositional and human interpretable. To demonstrate this fact, the paper uses a Image Guessing Game "Task and Talk" as a testbed. The game comprises of two bots, a questioner and answerer.

Answerer has an image attributes, as shown in figure. Questioner cannot see the image, and has a task of finding two attributes of the image (color, shape, style). Answerer does not know the task. Multiple rounds of q/a dialogs occur, after which the questioner has to guess the attributes. Reward to both bots is given on basis of prediction of questioner.

Task And Talk

Further, the paper discusses the ways to make the grounded language more compositional and human interpretable by restrictions on how two agents may communicate.

Setup

This repository is only compatible with Python3, as ParlAI imposes this restriction; it requires Python3.

  1. Follow instructions under Installing ParlAI section from ParlAI site.
  2. Follow instructions outlined on PyTorch Homepage for installing PyTorch (Python3).
  3. tqdm is used for providing progress bars, which can be downloaded via pip3.

Dataset Generation

Described in Section 2 and Figure 1 of paper. Synthetic dataset of shape attributes is generated using data/generate_data.py script. To generate the dataset, simply execute:

cd data
python3 generate_data.py
cd ..

This will create data/synthetic_dataset.json, with 80% training data (312 samples) and rest validation data (72 samples). Save path, size of dataset and split ratio can be changed through command line. For more information:

python3 generate_data.py --help

Dataset Schema

{
    "attributes": ["color", "shape", "style"],
    "properties": {
        "color": ["red", "green", "blue", "purple"],
        "shape": ["square", "triangle", "circle", "star"],
        "style": ["dotted", "solid", "filled", "dashed"]
    },
    "split_data": {
        "train": [ ["red", "square", "solid"], ["color2", "shape2", "style2"] ],
        "val": [ ["green", "star", "dashed"], ["color2", "shape2", "style2"] ]
    },
    "task_defn": [ [0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1] ]
}

A custom Pytorch Dataset class is written in dataloader.py which ingests this dataset and provides random batch / complete data while training and validation.

Training

Training happens through train.py, which iteratively carries out multiple rounds of dialog in each episode, between our ParlAI Agents - QBot and ABot, both placed in a ParlAI World. The dialog is completely cooperative - both bots receive same reward after each episode.

This script prints the cumulative reward, training accuracy and validation accuracy after fixed number of iterations. World checkpoints are saved after regular intervals as well.

Training is controlled by various options, which can be passed through command line. All of them have suitable default values set in options.py, although they can be tinkered easily. They can also be viewed as:

python3 train.py --help   # view command line args (you need not change "Main ParlAI Arguments")

Questioner and Answerer bot classes are defined in bots.py and World is defined in world.py. Paper describes three configurations for training:

Overcomplete Vocabulary

Described in Section 4.1 of paper. Both QBot and Abot will have vocabulary size equal to number of possible objects (64).

python3 train.py --data-path /path/to/json --q-out-vocab 64 --a-out-vocab 64

Attribute-Value Vocabulary

Described in Section 4.2 of paper. Both QBot will have vocab size 3 (color, shape, style) and Abot will have vocabulary size equal to number of possible attribute values (4 * 3).

python3 train.py --data-path /path/to/json --q-out-vocab 3 --a-out-vocab 12

Memoryless ABot, Minimal Vocabulary (best)

Described in Section 4.3 of paper. Both QBot will have vocab size 3 (color, shape, style) and Abot will have vocabulary size equal to number of possible values per attribute (4).

python3 train.py --q-out-vocab 3 --a-out-vocab 4 --data-path /path/to/json --memoryless-abot

Checkpoints would be saved by default in checkpoints directory every 100 epochs. Be default, CPU is used for training. Include --use-gpu in command-line to train using GPU.

Refer script docstring and inline comments in train.py for understanding of execution.

Evaluation

Saved world checkpoints can be evaluated using the evaluate.py script. Besides evaluation, the dialog between QBot and ABot for all examples can be saved in JSON format. For evaluation:

python3 evaluate.py --load-path /path/to/pth/checkpoint

Save the conversation of bots by providing --save-conv-path argument. For more information:

python3 evaluate.py --help

Evaluation script reports training and validation accuracies of the world. Separate accuracies for first attribute match, second attribute match, both match and atleast one match are reported.

Sample Conversation

Im: ['purple', 'triangle', 'filled'] -  Task: ['shape', 'color']
    Q1: X    A1: 2
    Q2: Y    A2: 0
    GT: ['triangle', 'purple']  Pred: ['triangle', 'purple']

Pretrained World Checkpoint

Best performing world checkpoint has been released here, along with details to reconstruct the world object using this checkpoint.

Reported metrics:

Overall accuracy [train]: 96.47 (first: 97.76, second: 98.72, atleast_one: 100.00)
Overall accuracy [val]: 98.61 (first: 98.61, second: 100.00, atleast_one: 100.00)

TODO: Visualizing evolution chart - showing emergence of grounded language.

References

  1. Satwik Kottur, José M.F.Moura, Stefan Lee, Dhruv Batra. Natural Language Does Not Emerge Naturally in Multi-Agent Dialog. EMNLP 2017. [arxiv]
  2. Alexander H. Miller, Will Feng, Adam Fisch, Jiasen Lu, Dhruv Batra, Antoine Bordes, Devi Parikh, Jason Weston. ParlAI: A Dialog Research Software Platform. 2017. [arxiv]
  3. Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F. Moura, Devi Parikh and Dhruv Batra. Visual Dialog. CVPR 2017. [arxiv]
  4. Abhishek Das, Satwik Kottur, José M.F. Moura, Stefan Lee, and Dhruv Batra. Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning. ICCV 2017. [arxiv]
  5. ParlAI Docs. [http://parl.ai/static/docs/index.html]
  6. PyTorch Docs. [http://pytorch.org/docs/master]

Standing on the Shoulders of Giants

The ease of implementing this paper using ParlAI framework is heavy accredited to the original source code released by authors of this paper. [batra-mlp-lab/lang-emerge]

License

BSD

You might also like...
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Oriented Response Networks, in CVPR 2017
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

Improving Convolutional Networks via Attention Transfer (ICLR 2017)
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

🌈 PyTorch Implementation for EMNLP'21 Findings
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Releases(v1.0)
  • v1.0(Nov 10, 2017)

    Attached checkpoint was the best one when the following script was executed at this commit:

    python3 train.py --use-gpu --memoryless-abot --num-epochs 99999
    

    Evaluation of the checkpoint:

    python3 evaluate.py --load-path world_best.pth 
    

    Reported metrics:

    Overall accuracy [train]: 96.47 (first: 97.76, second: 98.72, atleast_one: 100.00)
    Overall accuracy [val]: 98.61 (first: 98.61, second: 100.00, atleast_one: 100.00)
    

    Minimal snippet to reconstruct the world using this checkpoint:

    import torch
    
    from bots import Questioner, Answerer
    from world import QAWorld
    
    world_dict = torch.load('path/to/checkpoint.pth')
    questioner = Questioner(world_dict['opt'])
    answerer = Answerer(world_dict['opt'])
    if world_dict['opt'].get('use_gpu'):
        questioner, answerer = questioner.cuda(), answerer.cuda()
    
    questioner.load_state_dict(world_dict['qbot'])
    answerer.load_state_dict(world_dict['abot'])
    world = QAWorld(world_dict['opt'], questioner, answerer)
    
    Source code(tar.gz)
    Source code(zip)
    world_best.pth(679.17 KB)
Owner
Karan Desai
Karan Desai
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022