Oriented Response Networks, in CVPR 2017

Overview

Oriented Response Networks

[Home] [Project] [Paper] [Supp] [Poster]

illustration

Torch Implementation

The torch branch contains:

  • the official torch implementation of ORN.
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • Torch7

Getting started

You can setup everything via a single command wget -O - https://git.io/vHCMI | bash or do it manually in case something goes wrong:

  1. install the dependencies (required by the demo code):

  2. clone the torch branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b torch --single-branch ORN.torch
    cd ORN.torch
    export DIR=$(pwd)
  3. install ORN:

    cd $DIR/install
    # install the CPU/GPU/CuDNN version ORN.
    bash install.sh
  4. unzip the MNIST dataset:

    cd $DIR/demo/datasets
    unzip MNIST
  5. run the MNIST-Variants demo:

    cd $DIR/demo
    # you can modify the script to test different hyper-parameters
    bash ./scripts/Train_MNIST.sh

Trouble shooting

If you run into 'cudnn.find' not found, update Torch7 to the latest version via cd <TORCH_DIR> && bash ./update.sh then re-install everything.

More experiments

CIFAR 10/100

You can train the OR-WideResNet model (converted from WideResNet by simply replacing Conv layers with ORConv layers) on CIFAR dataset with WRN.

dataset=cifar10_original.t7 model=or-wrn widen_factor=4 depth=40 ./scripts/train_cifar.sh

With exactly the same settings, ORN-augmented WideResNet achieves state-of-the-art result while using significantly fewer parameters.

CIFAR

Network Params CIFAR-10 (ZCA) CIFAR-10 (mean/std) CIFAR-100 (ZCA) CIFAR-100 (mean/std)
DenseNet-100-12-dropout 7.0M - 4.10 - 20.20
DenseNet-190-40-dropout 25.6M - 3.46 - 17.18
WRN-40-4 8.9M 4.97 4.53 22.89 21.18
WRN-28-10-dropout 36.5M 4.17 3.89 20.50 18.85
WRN-40-10-dropout 55.8M - 3.80 - 18.3
ORN-40-4(1/2) 4.5M 4.13 3.43 21.24 18.82
ORN-28-10(1/2)-dropout 18.2M 3.52 2.98 19.22 16.15

Table.1 Test error (%) on CIFAR10/100 dataset with flip/translation augmentation)

ImageNet

ILSVRC2012

The effectiveness of ORN is further verified on large scale data. The OR-ResNet-18 model upgraded from ResNet-18 yields significant better performance when using similar parameters.

Network Params Top1-Error Top5-Error
ResNet-18 11.7M 30.614 10.98
OR-ResNet-18 11.4M 28.916 9.88

Table.2 Validation error (%) on ILSVRC-2012 dataset.

You can use facebook.resnet.torch to train the OR-ResNet-18 model from scratch or finetune it on your data by using the pre-trained weights.

-- To fill the model with the pre-trained weights:
model = require('or-resnet.lua')({tensorType='torch.CudaTensor', pretrained='or-resnet18_weights.t7'})

A more specific demo notebook of using the pre-trained OR-ResNet to classify images can be found here.

PyTorch Implementation

The pytorch branch contains:

  • the official pytorch implementation of ORN (alpha version supports 1x1/3x3 ARFs with 4/8 orientation channels only).
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • PyTorch

Getting started

  1. install the dependencies (required by the demo code):

    • tqdm: pip install tqdm
    • pillow: pip install Pillow
  2. clone the pytorch branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b pytorch --single-branch ORN.pytorch
    cd ORN.pytorch
    export DIR=$(pwd)
  3. install ORN:

    cd $DIR/install
    bash install.sh
  4. run the MNIST-Variants demo:

    cd $DIR/demo
    # train ORN on MNIST-rot
    python main.py --use-arf
    # train baseline CNN
    python main.py

Caffe Implementation

The caffe branch contains:

  • the official caffe implementation of ORN (alpha version supports 1x1/3x3 ARFs with 4/8 orientation channels only).
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • Caffe

Getting started

  1. install the dependency (required by the demo code):

  2. clone the caffe branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b caffe --single-branch ORN.caffe
    cd ORN.caffe
    export DIR=$(pwd)
  3. install ORN:

    # modify Makefile.config first
    # compile ORN.caffe
    make clean && make -j"$(nproc)" all
  4. run the MNIST-Variants demo:

    cd $DIR/examples/mnist
    bash get_mnist.sh
    # train ORN & CNN on MNIST-rot
    bash train.sh

Note

Due to implementation differences,

  • upgrading Conv layers to ORConv layers can be done by adding an orn_param
  • num_output of ORConv layers should be multipied by nOrientation of ARFs

Example:

layer {
  type: "Convolution"
  name: "ORConv" bottom: "Data" top: "ORConv"
  # add this line to replace regular filters with ARFs
  orn_param {orientations: 8}
  param { lr_mult: 1 decay_mult: 2}
  convolution_param {
    # this means 10 ARF feature maps
    num_output: 80
    kernel_size: 3
    stride: 1
    pad: 0
    weight_filler { type: "msra"}
    bias_filler { type: "constant" value: 0}
  }
}

Check the MNIST demo prototxt (and its visualization) for more details.

Citation

If you use the code in your research, please cite:

@INPROCEEDINGS{Zhou2017ORN,
    author = {Zhou, Yanzhao and Ye, Qixiang and Qiu, Qiang and Jiao, Jianbin},
    title = {Oriented Response Networks},
    booktitle = {CVPR},
    year = {2017}
}
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022