StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

Related tags

Deep LearningStackRec
Overview

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

Datasets

You can download datasets that have been pre-processed:

We construct a large-scale session-based recommendation dataset (denoted as Video-6M) by collecting the interactiton behaviors of nearly 6 million users in a week from a commercial recommender system. The dataset can be used to evaluate very deep recommendation models (up to 100 layers), such as NextItNet (as shown in our paper StackRec(SIGIR2021)). If you use this dataset in your paper, you should cite our NextItNet and StackRec for publish permission.

@article{yuan2019simple,
	title={A simple convolutional generative network for next item recommendation},
	author={Yuan, Fajie and Karatzoglou, Alexandros and Arapakis, Ioannis and Jose, Joemon M and He, Xiangnan},
	journal={Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining},
	year={2019}
}

@article{wang2020stackrec,
  title={StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking},
  author={Wang, Jiachun and Yuan, Fajie and Chen, Jian and Wu, Qingyao and Li, Chengmin and Yang, Min and Sun, Yang and Zhang, Guoxiao},
  journal={Proceedings of the 44th International ACM SIGIR conference on Research and Development in Information Retrieval},
  year={2021}
}

File Description

requirements.txt: the experiment environment

train_nextitnet_sc1.sh: the shell script to train StackRec with NextItNet in CL scenario
train_nextitnet_sc2.sh: the shell script to train StackRec with NextItNet in TF scenario
train_nextitnet_sc3.sh: the shell script to train StackRec with NextItNet in TS scenario
deep_nextitnet.py: the training file of NextItNet
deep_nextitnet_coldrec.py: the training file of NextItNet customized for coldrec source dataset
data_loader.py: the dataset loading file of NextItNet and GRec
data_loader_finetune.py: the dataset loading file of NextItNet and GRec customized for coldrec dataset
generator_deep.py: the model file of NextItNet
ops.py: the module file of NextItNet and GRec with stacking methods doubling blocks
ops_copytop.py: the module file of NextItNet with stacking methods allowed to stack top blocks
ops_original.py: the module file of NextItNet with stacking methods without alpha
fineall.py: the training file of NextItNet customized for coldrec target dataset

train_grec_sc1.sh: the shell script to train StackRec with GRec in CL scenario
deep_GRec: the training file of GRec
generator_deep_GRec.py: the model file of GRec
utils_GRec.py: some tools for GRec

train_sasrec_sc1.sh: the shell script to train StackRec with SASRec in CL scenario
baseline_SASRec.py: the training file of SASRec
Data_loader_SASRec.py: the dataset loading file of SASRec
SASRec_Alpha.py: the model file of SASRec

train_ssept_sc1.sh: the shell script to train StackRec with SSEPT in CL scenario
baseline_SSEPT.py: the training file of SSEPT
Data_loader_SSEPT.py: the dataset loading file of SSEPT
SSEPT_Alpha.py: the model file of SSEPT
utils.py: some tools for SASRec and SSEPT
Modules.py: the module file of SASRec and SSEPT with stacking methods

Stacking with NextItNet

Train in the CL scenario

Execute example:

sh train_nextitnet_sc1.sh

Train in the TS scenario

Execute example:

sh train_nextitnet_sc2.sh

Train in the TF scenario

Execute example:

sh train_nextitnet_sc3.sh

Stacking with GRec

Execute example:

sh train_grec_sc1.sh

Stacking with SASRec

Execute example:

sh train_sasrec_sc1.sh

Stacking with SSEPT

Execute example:

sh train_ssept_sc1.sh

Key Configuration

  • method: five stacking methods including from_scratch, stackC, stackA, stackR and stackE
  • data_ratio: the percentage of training data
  • dilation_count: the number of dilation factors {1,2,4,8}
  • num_blocks: the number of residual blocks
  • load_model: whether load pre-trained model or not
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022