Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Overview

Torch Mutable Modules

Use in-place and assignment operations on PyTorch module parameters with support for autograd.

Publish to PyPI Run tests PyPI version Number of downloads from PyPI per month Python version support Code Style: Black

Why does this exist?

PyTorch does not allow in-place operations on module parameters (usually desirable):

linear_layer = torch.nn.Linear(1, 1)
linear_layer.weight.data += 69
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Valid, but will NOT store grad_fn=<AddBackward0>
linear_layer.weight += 420
# ^^^^^^^^^^^^^^^^^^^^^^^^
# RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.

In some cases, however, it is useful to be able to modify module parameters in-place. For example, if we have a neural network (net_1) that predicts the parameter values to another neural network (net_2), we need to be able to modify the weights of net_2 in-place and backpropagate the gradients to net_1.

# create a parameter predictor network (net_1)
net_1 = torch.nn.Linear(1, 2)

# predict the weights and biases of net_2 using net_1
p_weight_and_bias = net_1(input_0).unsqueeze(2)
p_weight, p_bias = p_weight_and_bias[:, 0], p_weight_and_bias[:, 1]

# create a mutable network (net_2)
net_2 = to_mutable_module(torch.nn.Linear(1, 1))

# hot-swap the weights and biases of net_2 with the predicted values
net_2.weight = p_weight
net_2.bias = p_bias

# compute the output and backpropagate the gradients to net_1
output = net_2(input_1)
loss = criterion(output, label)
loss.backward()
optimizer.step()

This library provides a way to easily convert PyTorch modules into mutable modules with the to_mutable_module function.

Installation

You can install torch-mutable-modules from PyPI.

pip install torch-mutable-modules

To upgrade an existing installation of torch-mutable-modules, use the following command:

pip install --upgrade --no-cache-dir torch-mutable-modules

Importing

You can use wildcard imports or import specific functions directly:

# import all functions
from torch_mutable_modules import *

# ... or import the function manually
from torch_mutable_modules import to_mutable_module

Usage

To convert an existing PyTorch module into a mutable module, use the to_mutable_module function:

converted_module = to_mutable_module(
    torch.nn.Linear(1, 1)
) # type of converted_module is still torch.nn.Linear

converted_module.weight *= 0
convreted_module.weight += 69
convreted_module.weight # tensor([[69.]], grad_fn=<AddBackward0>)

You can also declare your own PyTorch module classes as mutable, and all child modules will be recursively converted into mutable modules:

class MyModule(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(1, 1)
    
    def forward(self, x):
        return self.linear(x)

my_module = to_mutable_module(MyModule())
my_module.linear.weight *= 0
my_module.linear.weight += 69
my_module.linear.weight # tensor([[69.]], grad_fn=<AddBackward0>)

Usage with CUDA

To create a module on the GPU, simply pass a PyTorch module that is already on the GPU to the to_mutable_module function:

converted_module = to_mutable_module(
    torch.nn.Linear(1, 1).cuda()
) # converted_module is now a mutable module on the GPU

Moving a module to the GPU with .to() and .cuda() after instanciation is NOT supported. Instead, hot-swap the module parameter tensors with their CUDA counterparts.

# both of these are valid
converted_module.weight = converted_module.weight.cuda()
converted_module.bias = converted_module.bias.to("cuda")

Detailed examples

Please check out example.py to see more detailed example usages of the to_mutable_module function.

Contributing

Please feel free to submit issues or pull requests!

You might also like...
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

 MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare results and run monte carlo algorithm with them

Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Torch implementation of
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Automatic number plate recognition using tech:  Yolo, OCR, Scene text detection, scene text recognation, flask, torch
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Releases(v1.1.2)
Owner
Kento Nishi
17-year-old programmer at Lynbrook High School, with strong interests in AI/Machine Learning. Open source developer and researcher at the Four Eyes Lab.
Kento Nishi
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022