This repository compare a selfie with images from identity documents and response if the selfie match.

Overview

aws-rekognition-facecompare

This repository compare a selfie with images from identity documents and response if the selfie match.

This code was made in a Python Notebook under SageMaker.

Set up:

  • Create a Notebook Instance in SageMaker
  • Notebook instance type : ml.t2.medium
  • Volume Size : 5GB EBS
  • Create a role for SageMaker with the following policies:
  • AmazonS3FullAccess
  • AmazonRekognitionFullAccess
  • AmazonSageMakerFullAccess
  1. Create a S3 Bucket
  2. Inside bucket create folder to insert the dataset images

Code Explanation

boto3 is needed to use the aws client of S3 and Rekognition. Just like what we do with variables, data can be kept as bytes in an in-memory buffer when we use the io module’s Byte IO operations, so we can load images froms S3. At least Pillow is needed for image plotting.

import boto3
import io
from PIL import Image, ImageDraw, ExifTags, ImageColor

rekognition_client=boto3.client('rekognition')
s3_resource = boto3.resource('s3')

In this notebook I use two functions of AWS Rekognition

  • detect_faces : Detect faces in the image. It also evaluate different metrics and create different landmarks for all elements of the face like eyes positions.
  • compare_faces : Evaluate the similarity of two faces.

Case of use

Here I explain how to compare two images

The compare function

IMG_SOURCE ="dataset-CI/imgsource.jpg"
IMG_TARGET ="dataset-CI/img20.jpg"
response = rekognition_client.compare_faces(
                SourceImage={
                    'S3Object': {
                        'Bucket': BUCKET,
                        'Name': IMG_SOURCE
                    }
                },
                TargetImage={
                    'S3Object': {
                        'Bucket': BUCKET,
                        'Name': IMG_TARGET                    
                    }
                }
)

response

{'SourceImageFace': {'BoundingBox': {'Width': 0.3676206171512604,
   'Height': 0.5122320055961609,
   'Left': 0.33957839012145996,
   'Top': 0.18869829177856445},
  'Confidence': 99.99957275390625},
 'FaceMatches': [{'Similarity': 99.99634552001953,
   'Face': {'BoundingBox': {'Width': 0.14619407057762146,
     'Height': 0.26241832971572876,
     'Left': 0.13103649020195007,
     'Top': 0.40437373518943787},
    'Confidence': 99.99955749511719,
    'Landmarks': [{'Type': 'eyeLeft',
      'X': 0.17260463535785675,
      'Y': 0.5030772089958191},
     {'Type': 'eyeRight', 'X': 0.23902645707130432, 'Y': 0.5023221969604492},
     {'Type': 'mouthLeft', 'X': 0.17937719821929932, 'Y': 0.5977044105529785},
     {'Type': 'mouthRight', 'X': 0.23477530479431152, 'Y': 0.5970458984375},
     {'Type': 'nose', 'X': 0.20820103585720062, 'Y': 0.5500822067260742}],
    'Pose': {'Roll': 0.4675966203212738,
     'Yaw': 1.592366099357605,
     'Pitch': 8.6331205368042},
    'Quality': {'Brightness': 85.35185241699219,
     'Sharpness': 89.85481262207031}}}],
 'UnmatchedFaces': [],
 'ResponseMetadata': {'RequestId': '3ae9032d-de8a-41ef-b22f-f95c70eed783',
  'HTTPStatusCode': 200,
  'HTTPHeaders': {'x-amzn-requestid': '3ae9032d-de8a-41ef-b22f-f95c70eed783',
   'content-type': 'application/x-amz-json-1.1',
   'content-length': '911',
   'date': 'Wed, 26 Jan 2022 17:21:53 GMT'},
  'RetryAttempts': 0}}

If the source image match with the target image, the json return a key "FaceMatches" with a non-empty, otherwise it returns a key "UnmatchedFaces" with a non-empty array.

# Analisis imagen source
s3_object = s3_resource.Object(BUCKET,IMG_SOURCE)
s3_response = s3_object.get()
stream = io.BytesIO(s3_response['Body'].read())
image=Image.open(stream)
imgWidth, imgHeight = image.size  
draw = ImageDraw.Draw(image)  

box = response['SourceImageFace']['BoundingBox']
left = imgWidth * box['Left']
top = imgHeight * box['Top']
width = imgWidth * box['Width']
height = imgHeight * box['Height']

print('Left: ' + '{0:.0f}'.format(left))
print('Top: ' + '{0:.0f}'.format(top))
print('Face Width: ' + "{0:.0f}".format(width))
print('Face Height: ' + "{0:.0f}".format(height))

points = (
    (left,top),
    (left + width, top),
    (left + width, top + height),
    (left , top + height),
    (left, top)

)
draw.line(points, fill='#00d400', width=2)

image.show()
Left: 217
Top: 121
Face Width: 235
Face Height: 328

png

0: for face in response['FaceMatches']: face_match = face['Face'] box = face_match['BoundingBox'] left = imgWidth * box['Left'] top = imgHeight * box['Top'] width = imgWidth * box['Width'] height = imgHeight * box['Height'] print('FaceMatches') print('Left: ' + '{0:.0f}'.format(left)) print('Top: ' + '{0:.0f}'.format(top)) print('Face Width: ' + "{0:.0f}".format(width)) print('Face Height: ' + "{0:.0f}".format(height)) points = ( (left,top), (left + width, top), (left + width, top + height), (left , top + height), (left, top) ) draw.line(points, fill='#00d400', width=2) image.show()">
# Analisis imagen target
s3_object = s3_resource.Object(BUCKET,IMG_TARGET)
s3_response = s3_object.get()
stream = io.BytesIO(s3_response['Body'].read())
image=Image.open(stream)
imgWidth, imgHeight = image.size  
draw = ImageDraw.Draw(image)
if len(response['UnmatchedFaces']) > 0:
    for face in response['UnmatchedFaces']:
        box = face['BoundingBox']
        left = imgWidth * box['Left']
        top = imgHeight * box['Top']
        width = imgWidth * box['Width']
        height = imgHeight * box['Height']
        print('UnmatchedFaces')
        print('Left: ' + '{0:.0f}'.format(left))
        print('Top: ' + '{0:.0f}'.format(top))
        print('Face Width: ' + "{0:.0f}".format(width))
        print('Face Height: ' + "{0:.0f}".format(height))

        points = (
            (left,top),
            (left + width, top),
            (left + width, top + height),
            (left , top + height),
            (left, top)

        )
        draw.line(points, fill='#ff0000', width=2)
        
if len(response['FaceMatches']) > 0:
    for face in response['FaceMatches']:
        face_match = face['Face']
        box = face_match['BoundingBox']
        left = imgWidth * box['Left']
        top = imgHeight * box['Top']
        width = imgWidth * box['Width']
        height = imgHeight * box['Height']
        print('FaceMatches')
        print('Left: ' + '{0:.0f}'.format(left))
        print('Top: ' + '{0:.0f}'.format(top))
        print('Face Width: ' + "{0:.0f}".format(width))
        print('Face Height: ' + "{0:.0f}".format(height))

        points = (
            (left,top),
            (left + width, top),
            (left + width, top + height),
            (left , top + height),
            (left, top)

        )
        draw.line(points, fill='#00d400', width=2)        
image.show()
FaceMatches
Left: 671
Top: 1553
Face Width: 749
Face Height: 1008

png

Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022