DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

Overview

DockStream

alt text

Description

DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution and post hoc analysis can be automated via the benchmarking and analysis workflow. The flexilibity to specifiy a large variety of docking configurations allows tailored protocols for diverse end applications. DockStream can also parallelize docking across CPU cores, increasing throughput. DockStream is integrated with the de novo design platform, REINVENT, allowing one to incorporate docking into the generative process, thus providing the agent with 3D structural information.

Supported Backends

Ligand Embedders

Docking Backends

Note: The CCDC package, the OpenEye toolkit and Schrodinger's tools require you to obtain the respective software from those vendors.

Tutorials and Usage

Detailed Jupyter Notebook tutorials for all DockStream functionalities and workflows are provided in DockStreamCommunity. The DockStream repository here contains input JSON templates located in examples. The templates are organized as follows:

  • target_preparation: Preparing targets for docking
  • ligand_preparation: Generating 3D coordinates for ligands
  • docking: Docking ligands
  • integration: Combining different ligand embedders and docking backends into a single input JSON to run successively

Requirements

Two Conda environments are provided: DockStream via environment.yml and DockStreamFull via environment_full.yml. DockStream suffices for all use cases except when CCDC GOLD software is used, in which case DockStreamFull is required.

git clone <DockStream repository>
cd <DockStream directory>
conda env create -f environment.yml
conda activate DockStream

Enable use of OpenEye software (from REINVENT README)

You will need to set the environmental variable OE_LICENSE to activate the oechem license. One way to do this and keep it conda environment specific is: On the command-line, first:

cd $CONDA_PREFIX
mkdir -p ./etc/conda/activate.d
mkdir -p ./etc/conda/deactivate.d
touch ./etc/conda/activate.d/env_vars.sh
touch ./etc/conda/deactivate.d/env_vars.sh

Then edit ./etc/conda/activate.d/env_vars.sh as follows:

#!/bin/sh
export OE_LICENSE='/opt/scp/software/oelicense/1.0/oe_license.seq1'

and finally, edit ./etc/conda/deactivate.d/env_vars.sh :

#!/bin/sh
unset OE_LICENSE

Unit Tests

After cloning the DockStream repository, enable licenses, if applicable (OpenEye, CCDC, Schrodinger). Then execute the following:

python unit_tests.py

Contributors

Christian Margreitter ([email protected]) Jeff Guo ([email protected]) Alexey Voronov ([email protected])

Comments
  • Glide dockings using local machine

    Glide dockings using local machine

    Hi, I am trying to play with DockStream using Schrodinger. I am wondering if there is the possibility to use it in the local machine specifying $SCHRODINGER/glide instead of the tokens procedure.

    opened by Oulfin 6
  • Bug in Glide backend parallelization

    Bug in Glide backend parallelization

    First, thanks for contributing this nice toolbox.

    This is to report a bug in the following module:

    https://github.com/MolecularAI/DockStream/blob/7bdfd4a67f5c938e3222db59387e5a95e8a59e56/dockstream/core/Schrodinger/Glide_docker.py#L404

    while loop is used to process all sublists in batches. However, the number of processed sublists as recorded in jobs_submitted could be off because this variable is the cumulative sum of len(tmp_output_dirs), which could be smaller than len(cur_slice_sublists) if any of the sublists has no valid molecules to write out.

    The bug may cause some of the sublists get processed repeatedly, and in extreme cases may result in an infinite loop.

    I didn't check if any other backend uses similar logic to parallelize the run and may suffer from the same problem.

    opened by hshany 3
  • Question: Is it possible to feed an sdf file of prepared ligands straight into docking?

    Question: Is it possible to feed an sdf file of prepared ligands straight into docking?

    I'm trying to work out whether it's possible to put an sdf file of prepared ligands straight into a Glide run? i.e. not specifying an input_pool to the docking_runs list? (especially when using docker.py)

    opened by reskyner 2
  • Raise LigandPreparationFailed error

    Raise LigandPreparationFailed error

    For OpenEye Hybrid, it reported LigandPreparationFailed errors for both CORINA and OMEGA backend. One example is shown below: `File "/DockStream/dockstream/core/OpenEyeHybrid/Omega_ligand_preparator.py", line 66, in init raise LigandPreparationFailed("Cannot initialize OMEGA backend - abort.") dockstream.utils.dockstream_exceptions.LigandPreparationFailed: Cannot initialize OMEGA backend - abort.

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "/DockStream/docker.py", line 132, in raise LigandPreparationFailed dockstream.utils.dockstream_exceptions.LigandPreparationFailed`

    Could you please help me with this problem? I tried both the provided receptor-ligand data files from DockStreamCommunity and my own dataset. Both reported same LigandPreparation error. Thank you in advance!

    opened by fangffRS 1
  • ADV 1.2.0 support

    ADV 1.2.0 support

    For DockStream to work with the new AutoDock-Vina 1.2.0 (https://pubs.acs.org/doi/10.1021/acs.jcim.1c00203), the "log-file" specification has to go:

    https://github.com/MolecularAI/DockStream/blob/efefbe52d3cecb8b6d1b72ab719aad1e4702833b/dockstream/core/AutodockVina/AutodockVina_docker.py#L275

    Should be backwards-compatible.

    opened by CMargreitter 1
  • Input file of the function

    Input file of the function "parse_maestro"

    First of all, thank you for your wonderful work in drug development area using AI. I am using Glide to get the result through DockStream. I think the the function parse_maestro in Glide_docker.py can be used to extract setting for docking(In DockStream, this setting is written json file). Is this right? If so, could you tell me the input file type for the parse_mastro?! (eg. maegz, mae, sdf, etc.) I tried the function with maegz (output from Glide docking), but I couldn't get the result. I want to use parse_maestro function to reproduce the setting which applied to previous docking simulation. I would be very grateful if you could give the answer to me. Thanks!

    opened by SejeongPark8354 0
  • Openbabel integration failed

    Openbabel integration failed

    I am trying to implement Dockstream with the vina backend, an exception is raised with openBabel executable.

    Traceback (most recent call last): File "DockStream/target_preparator.py", line 130, in prep = AutodockVinaTargetPreparator(conf=config, target=input_pdb_path, run_number=run_number) File "C:\Users\Y-8874903-E.ESTUDIANT\OneDrive - URV\Escritorio\PLIP interaction\DockStream\dockstream\core\AutodockVina\AutodockVina_target_preparator.py", line 56, in init raise TargetPreparationFailed("Cannot initialize OpenBabel external library, which should be part of the environment - abort.") dockstream.utils.dockstream_exceptions.TargetPreparationFailed: Cannot initialize OpenBabel external library, which should be part of the environment - abort.

    The above exception was the direct cause of the following exception:

    Traceback (most recent call last): File "DockStream/target_preparator.py", line 139, in raise TargetPreparationFailed() from e dockstream.utils.dockstream_exceptions.TargetPreparationFailed

    Follow all necessary steps mentioned in docs.

    opened by Crispae 1
  • Parallelization of ADV for docking

    Parallelization of ADV for docking

    Hello,

    I am trying to run first docking experiments together with reinvent. I am observing many ADV jobs getting started with -cpu 1 (hardcoded), but a few (1 or 2) take quite long and leave all other CPUs idle until the batch has finished and a new batch has started.

    This leaves quite some capacity of a e.g. 16-core machine unused - at least that is my impression when observing the run via top or ps. In the dockstream.config, parallelization.number_cores is set to 16.

    Are there better practical settings to better exploit larger machines with 16-64 CPUs ?

    Lars

    opened by LarsAC 3
  • No module named 'ccdc'

    No module named 'ccdc'

    I believe I successfully installed the normal (not Full) DockStream package as per your instructions on the github site, and then tried to run the unit test, but this fails with a complaint regarding the ccdc module missing (see below). But I want to use Glide so wouldn’t need (nor have) ccdc. I am doing this on Ubuntu 18.04.

    Dockstream/python ./unit_tests.py Traceback (most recent call last): File "./unit_tests.py", line 10, in from tests.Gold import * File "/media/data/evehom/Projects/CompChem/DockStream/tests/Gold/init.py", line 1, in from tests.Gold.test_Gold_target_preparation import * File "/media/data/evehom/Projects/CompChem/DockStream/tests/Gold/test_Gold_target_preparation.py", line 11, in from dockstream.core.Gold.Gold_target_preparator import GoldTargetPreparator File "/media/data/evehom/Projects/CompChem/DockStream/dockstream/core/Gold/Gold_target_preparator.py", line 3, in import ccdc ModuleNotFoundError: No module named 'ccdc'

    opened by Evert-Homan 4
Releases(v1.0.0)
Owner
AstraZeneca - Molecular AI
Software from the Molecular AI department at AstraZeneca R&D
AstraZeneca - Molecular AI
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022