Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Related tags

Deep LearningMCLAS
Overview

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS)

The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Some codes are borrowed from PreSumm (https://github.com/nlpyang/PreSumm).

[toc]

Environments

Python version: This code is in Python3.7

Package Requirements: torch==1.1.0 transformers tensorboardX multiprocess pyrouge

Needs few changes to be compatible with torch 1.4.0~1.8.0, mainly tensor type (bool) bugs.

Data Preparation

To improve training efficiency, we preprocessed concatenated dataset (with target "monolingual summary + [LSEP] + cross-lingual summary") and normal dataset (with target "cross-lingual summary") in advance.

You can build your own dataset or download our preprocessed dataset.

Download Preprocessed dataset.

  1. En2De dataset: Google Drive Link.
  2. En2EnDe (concatenated) dataset: Google Drive Link.
  3. Zh2En dataset: Google Drive Link.
  4. Zh2ZhEn (concatenated) dataset: Google Drive Link.
  5. En2Zh dataset: Google Drive Link.
  6. En2EnZh (concatenated) dataset: Google Drive Link.

Build Your Own Dataset.

Remain to be origanized. Some of the code needs to be debug, plz use it carefully.

Build tokenized files.

Plz refer to function tokenize_xgiga() or tokenize_new() in ./src/data_builder.py to write your code to preprocess your own training, validation, and test dataset. And then run the following commands:

python preprocess.py -mode tokenize_xgiga -raw_path PATH_TO_YOUR_RAW_DATA -save_path PATH_TO_YOUR_SAVE_PATH
  • Stanford CoreNLP needs to be installed.

Plz substitute "tokenize_xgiga" to your own process function.

In our case, we made the raw data directory as follows:

.
└── raw_directory
    ├── train
    |   ├── 1.story
    |   ├── 2.story
    |   ├── 3.story
    |   └── ...
    ├── test
    |   ├── 1.story
    |   ├── 2.story
    |   ├── 3.story
    |   └── ...
    └─ dev
        ├── 1.story
        ├── 2.story
        ├── 3.story
        └── ...

Correspondingly, the tokenized data directory is as follows

.
└── raw_directory
    ├── train
    |   ├── 1.story.json
    |   ├── 2.story.json
    |   ├── 3.story.json
    |   └── ...
    ├── test
    |   ├── 1.story.json
    |   ├── 2.story.json
    |   ├── 3.story.json
    |   └── ...
    └─ dev
        ├── 1.story.json
        ├── 2.story.json
        ├── 3.story.json
        └── ...

Build tokenized files to json files.

python preprocess.py -mode format_to_lines_new -raw_path RAW_PATH -save_path JSON_PATH -n_cpus 1 -use_bert_basic_tokenizer false -map_path MAP_PATH -shard_size 3000

Shard size is pretty important and needs to be selected carefully. This implementation use a shard as a base data unit for low-resource training. In our setting, the shard size of En2Zh, Zh2En, and En2De is 1.5k, 5k, and 3k, respectively.

Build json files to pytorch(pt) files.

python preprocess.py -mode format_to_bert_new -raw_path JSON_PATH -save_path BERT_DATA_PATH  -lower -n_cpus 1 -log_file ../logs/preprocess.log

Model Training

Full dataset scenario training

To train our model in full dataset scenario, plz use following command. Change the data path to switch the trained model between NCLS and MCLAS.

When using NCLS type datasets, arguement '--multi_task' enables training with NCLS+MS model.

 python train.py  \
 -task abs -mode train \
 -temp_dir ../tmp \
 -bert_data_path PATH_TO_DATA/ncls \  
 -dec_dropout 0.2  \
 -model_path ../model_abs_en2zh_noseg \
 -sep_optim true \
 -lr_bert 0.005 -lr_dec 0.2 \
 -save_checkpoint_steps 5000 \
 -batch_size 1300 \
 -train_steps 400000 \
 -report_every 50 -accum_count 5 \
 -use_bert_emb true -use_interval true \
 -warmup_steps_bert 20000 -warmup_steps_dec 10000 \
 -max_pos 512 -visible_gpus 0  -max_length 1000 -max_tgt_len 1000 \
 -log_file ../logs/abs_bert_en2zh  
 # --multi_task

Low-resource scenario training

Monolingual summarization pretraining

First we should train a monolingual summarization model using following commands:

You can change the trained model type using the same methods mentioned above (change dataset or '--multi_task' arguement)

python train.py  \
-task abs -mode train \
-dec_dropout 0.2  \
-model_path ../model_abs_en2en_de/ \
-bert_data_path PATH_TO_DATA/xgiga.en \
-temp_dir ../tmp \
-sep_optim true \
-lr_bert 0.002 -lr_dec 0.2 \
-save_checkpoint_steps 2000 \
-batch_size 210 \
-train_steps 200000 \
-report_every 50 -accum_count 5 \
-use_bert_emb true -use_interval true \
-warmup_steps_bert 25000 -warmup_steps_dec 15000 \
-max_pos 512 -visible_gpus 0,1,2 -max_length 1000 -max_tgt_len 1000 \
-log_file ../logs/abs_bert_mono_enen_de \
--train_first  

# -train_from is used as continue training from certain training checkpoints.
# example:
# -train_from ../model_abs_en2en_de/model_step_70000.pt \

Low-resource scenario fine-tuning

After obtaining the monolingual model, we use it to initialize the low-resource models and continue training process.

Note:

'--new_optim' is necessary since we need to restart warm-up and learning rate decay during this process.

'--few_shot' controls whether to use limited resource to train the model. Meanwhile, '-few_shot_rate' controls the number of samples that you want to use. More specifically, the number of dataset's chunks.

For each scenario in our paper (using our preprocessed dataset), the few_shot_rate is set as 1, 5, and 10.

python train.py  \
-task abs -mode train \
-dec_dropout 0.2  \
-model_path ../model_abs_enende_fewshot1_noinit/ \
-train_from ../model_abs_en2en_de/model_step_50000.pt \
-bert_data_path PATH_TO_YOUR_DATA/xgiga.en \
-temp_dir ../tmp \
-sep_optim true \
-lr_bert 0.002 -lr_dec 0.2 \
-save_checkpoint_steps 1000 \
-batch_size 270 \
-train_steps 10000 \
-report_every 50 -accum_count 5 \
-use_bert_emb true -use_interval true \
-warmup_steps_bert 25000 -warmup_steps_dec 15000 \
-max_pos 512 -visible_gpus 0,2,3 -max_length 1000 -max_tgt_len 1000 \
-log_file ../logs/abs_bert_enende_fewshot1_noinit \
--few_shot -few_shot_rate 1 --new_optim

Model Evaluation

To evaluate a model, use a command as follows:

python train.py -task abs \
-mode validate \
-batch_size 5 \
-test_batch_size 5 \
-temp_dir ../tmp \
-bert_data_path PATH_TO_YOUR_DATA/xgiga.en \
-log_file ../results/val_abs_bert_enende_fewshot1_noinit \
-model_path ../model_abs_enende_fewshot1_noinit -sep_optim true \
-use_interval true -visible_gpus 1 \
-max_pos 512 -max_length 150 \
-alpha 0.95 -min_length 20 \
-max_tgt_len 1000 \
-result_path ../logs/abs_bert_enende_fewshot1_noinit -test_all \
--predict_2language

If you are not evaluating a MCLAS model, plz remove '--predict_2language'.

If you are predicting Chinese summaries, plz add '--predict_chinese' to the command.

If you are evaluating a NCLS+MS model, plz add '--multi_task' to the command.

Using following two commands will slightly improve all models' performance.

'--language_limit' means that the predictor will only predict words appearing in summaries of training data.

'--tgt_mask' is a list, recording all the words appearing in summaries of the training set. We provided chiniese and english dict in ./src directory .

Other Notable Commands

Plz ignore these arguments, these command were added and abandoned when trying new ideas¸ I will delete these related code in the future.

  • --sep_decoder
  • --few_sep_decoder
  • --tgt_seg
  • --few_sep_decoder
  • -bart

Besides, '--batch_verification' is used to debug, printing all the attributes in a training batch.

Owner
Yu Bai
Yu Bai
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022