Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Related tags

Deep LearningMCLAS
Overview

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS)

The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Some codes are borrowed from PreSumm (https://github.com/nlpyang/PreSumm).

[toc]

Environments

Python version: This code is in Python3.7

Package Requirements: torch==1.1.0 transformers tensorboardX multiprocess pyrouge

Needs few changes to be compatible with torch 1.4.0~1.8.0, mainly tensor type (bool) bugs.

Data Preparation

To improve training efficiency, we preprocessed concatenated dataset (with target "monolingual summary + [LSEP] + cross-lingual summary") and normal dataset (with target "cross-lingual summary") in advance.

You can build your own dataset or download our preprocessed dataset.

Download Preprocessed dataset.

  1. En2De dataset: Google Drive Link.
  2. En2EnDe (concatenated) dataset: Google Drive Link.
  3. Zh2En dataset: Google Drive Link.
  4. Zh2ZhEn (concatenated) dataset: Google Drive Link.
  5. En2Zh dataset: Google Drive Link.
  6. En2EnZh (concatenated) dataset: Google Drive Link.

Build Your Own Dataset.

Remain to be origanized. Some of the code needs to be debug, plz use it carefully.

Build tokenized files.

Plz refer to function tokenize_xgiga() or tokenize_new() in ./src/data_builder.py to write your code to preprocess your own training, validation, and test dataset. And then run the following commands:

python preprocess.py -mode tokenize_xgiga -raw_path PATH_TO_YOUR_RAW_DATA -save_path PATH_TO_YOUR_SAVE_PATH
  • Stanford CoreNLP needs to be installed.

Plz substitute "tokenize_xgiga" to your own process function.

In our case, we made the raw data directory as follows:

.
└── raw_directory
    ├── train
    |   ├── 1.story
    |   ├── 2.story
    |   ├── 3.story
    |   └── ...
    ├── test
    |   ├── 1.story
    |   ├── 2.story
    |   ├── 3.story
    |   └── ...
    └─ dev
        ├── 1.story
        ├── 2.story
        ├── 3.story
        └── ...

Correspondingly, the tokenized data directory is as follows

.
└── raw_directory
    ├── train
    |   ├── 1.story.json
    |   ├── 2.story.json
    |   ├── 3.story.json
    |   └── ...
    ├── test
    |   ├── 1.story.json
    |   ├── 2.story.json
    |   ├── 3.story.json
    |   └── ...
    └─ dev
        ├── 1.story.json
        ├── 2.story.json
        ├── 3.story.json
        └── ...

Build tokenized files to json files.

python preprocess.py -mode format_to_lines_new -raw_path RAW_PATH -save_path JSON_PATH -n_cpus 1 -use_bert_basic_tokenizer false -map_path MAP_PATH -shard_size 3000

Shard size is pretty important and needs to be selected carefully. This implementation use a shard as a base data unit for low-resource training. In our setting, the shard size of En2Zh, Zh2En, and En2De is 1.5k, 5k, and 3k, respectively.

Build json files to pytorch(pt) files.

python preprocess.py -mode format_to_bert_new -raw_path JSON_PATH -save_path BERT_DATA_PATH  -lower -n_cpus 1 -log_file ../logs/preprocess.log

Model Training

Full dataset scenario training

To train our model in full dataset scenario, plz use following command. Change the data path to switch the trained model between NCLS and MCLAS.

When using NCLS type datasets, arguement '--multi_task' enables training with NCLS+MS model.

 python train.py  \
 -task abs -mode train \
 -temp_dir ../tmp \
 -bert_data_path PATH_TO_DATA/ncls \  
 -dec_dropout 0.2  \
 -model_path ../model_abs_en2zh_noseg \
 -sep_optim true \
 -lr_bert 0.005 -lr_dec 0.2 \
 -save_checkpoint_steps 5000 \
 -batch_size 1300 \
 -train_steps 400000 \
 -report_every 50 -accum_count 5 \
 -use_bert_emb true -use_interval true \
 -warmup_steps_bert 20000 -warmup_steps_dec 10000 \
 -max_pos 512 -visible_gpus 0  -max_length 1000 -max_tgt_len 1000 \
 -log_file ../logs/abs_bert_en2zh  
 # --multi_task

Low-resource scenario training

Monolingual summarization pretraining

First we should train a monolingual summarization model using following commands:

You can change the trained model type using the same methods mentioned above (change dataset or '--multi_task' arguement)

python train.py  \
-task abs -mode train \
-dec_dropout 0.2  \
-model_path ../model_abs_en2en_de/ \
-bert_data_path PATH_TO_DATA/xgiga.en \
-temp_dir ../tmp \
-sep_optim true \
-lr_bert 0.002 -lr_dec 0.2 \
-save_checkpoint_steps 2000 \
-batch_size 210 \
-train_steps 200000 \
-report_every 50 -accum_count 5 \
-use_bert_emb true -use_interval true \
-warmup_steps_bert 25000 -warmup_steps_dec 15000 \
-max_pos 512 -visible_gpus 0,1,2 -max_length 1000 -max_tgt_len 1000 \
-log_file ../logs/abs_bert_mono_enen_de \
--train_first  

# -train_from is used as continue training from certain training checkpoints.
# example:
# -train_from ../model_abs_en2en_de/model_step_70000.pt \

Low-resource scenario fine-tuning

After obtaining the monolingual model, we use it to initialize the low-resource models and continue training process.

Note:

'--new_optim' is necessary since we need to restart warm-up and learning rate decay during this process.

'--few_shot' controls whether to use limited resource to train the model. Meanwhile, '-few_shot_rate' controls the number of samples that you want to use. More specifically, the number of dataset's chunks.

For each scenario in our paper (using our preprocessed dataset), the few_shot_rate is set as 1, 5, and 10.

python train.py  \
-task abs -mode train \
-dec_dropout 0.2  \
-model_path ../model_abs_enende_fewshot1_noinit/ \
-train_from ../model_abs_en2en_de/model_step_50000.pt \
-bert_data_path PATH_TO_YOUR_DATA/xgiga.en \
-temp_dir ../tmp \
-sep_optim true \
-lr_bert 0.002 -lr_dec 0.2 \
-save_checkpoint_steps 1000 \
-batch_size 270 \
-train_steps 10000 \
-report_every 50 -accum_count 5 \
-use_bert_emb true -use_interval true \
-warmup_steps_bert 25000 -warmup_steps_dec 15000 \
-max_pos 512 -visible_gpus 0,2,3 -max_length 1000 -max_tgt_len 1000 \
-log_file ../logs/abs_bert_enende_fewshot1_noinit \
--few_shot -few_shot_rate 1 --new_optim

Model Evaluation

To evaluate a model, use a command as follows:

python train.py -task abs \
-mode validate \
-batch_size 5 \
-test_batch_size 5 \
-temp_dir ../tmp \
-bert_data_path PATH_TO_YOUR_DATA/xgiga.en \
-log_file ../results/val_abs_bert_enende_fewshot1_noinit \
-model_path ../model_abs_enende_fewshot1_noinit -sep_optim true \
-use_interval true -visible_gpus 1 \
-max_pos 512 -max_length 150 \
-alpha 0.95 -min_length 20 \
-max_tgt_len 1000 \
-result_path ../logs/abs_bert_enende_fewshot1_noinit -test_all \
--predict_2language

If you are not evaluating a MCLAS model, plz remove '--predict_2language'.

If you are predicting Chinese summaries, plz add '--predict_chinese' to the command.

If you are evaluating a NCLS+MS model, plz add '--multi_task' to the command.

Using following two commands will slightly improve all models' performance.

'--language_limit' means that the predictor will only predict words appearing in summaries of training data.

'--tgt_mask' is a list, recording all the words appearing in summaries of the training set. We provided chiniese and english dict in ./src directory .

Other Notable Commands

Plz ignore these arguments, these command were added and abandoned when trying new ideas¸ I will delete these related code in the future.

  • --sep_decoder
  • --few_sep_decoder
  • --tgt_seg
  • --few_sep_decoder
  • -bart

Besides, '--batch_verification' is used to debug, printing all the attributes in a training batch.

Owner
Yu Bai
Yu Bai
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022