The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

Overview

The Ludii General Game System

Build Status Maintenance twitter

Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository hosts the publicly available source code for Ludii. A precompiled build (Ludii.JAR) can be downloaded from Ludii's downloads page.

Requirements

Working with Ludii's source code requires Java Development Kit (JDK) version 8 or higher.

Getting Started

After (optionally forking) and cloning this repository, we recommend importing all projects into the Eclipse IDE. The main method to launch Ludii from your IDE is located in /Ludii/PlayerDesktop/src/app/StartDesktopApp. At this time we do not use any more sophisticated build tools (such as Maven) in our day-to-day programming with Ludii. There are some relatively simple Ant build scripts, but we only use these -- specifically, the /Ludii/PlayerDesktop/build.xml script -- for generating the releases published on the Ludii downloads page.

Note on IDEs: Other IDEs than Eclipse should ideally work as well, but we have no extensive experience working with Ludii in other IDEs, and are aware of at least some issues. For example, some parts of Ludii's code assume that, when launching Ludii from your IDE, that the current working directory is the one of the module containing the main method (i.e., /Ludii/PlayerDesktop). This is the case in Eclipse, but does not (by default) appear to be the case in some other IDEs such as IntelliJ. If you prefer working with different IDEs and are able to write a clear set of instructions for that IDE, we would be happy to see it in a new Pull Request!

Other Resources

We have various other resources available at the following links:

Contributing Guidelines

While we of course cannot guarantee that we will accept every suggested change or contribution, in principle we welcome contributions and are excited to see what you come up with! Please send contributions on GitHub as new Pull Requests, and provide brief descriptions of what has changed and in what ways these changes improve Ludii (or other aspects of the repo, such as documentation). Please ensure that any new or changed code follows the same code style as the rest of the repository.

Note: pull requests should be used for code or documentation contributions, but not for new games (i.e., .lud files). We prefer that new games are submitted through our forums.

Citing Information

When using Ludii's source code in any publications, please cite our paper describing Ludii: https://ecai2020.eu/papers/1248_paper.pdf

The following .bib entry may be used for citing the use of Ludii in papers:

@inproceedings{Piette2020Ludii,
        author      = "{\'E}. Piette and D. J. N. J. Soemers and M. Stephenson and C. F. Sironi and M. H. M. Winands and C. Browne",
        booktitle   = "Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020)",
        title       = "Ludii -- The Ludemic General Game System",
        pages       = "411-418",
        year        = "2020",
        editor      = "G. De Giacomo and A. Catala and B. Dilkina and M. Milano and S. Barro and A. Bugarín and J. Lang",
        series      = "Frontiers in Artificial Intelligence and Applications",
        volume      = "325",
    publisher	= "IOS Press"
}

Contact Info

The preferred method for getting help with troubleshooting, suggesting or requesting additional functionality, or asking other questions about Ludii's source code, is posting a message on the Ludii Forum. Alternatively, the following email address may be used: ludii(dot)games(at)gmail(dot)com.

Acknowledgements

This repository is part of the European Research Council-funded Digital Ludeme Project (ERC Consolidator Grant #771292) run by Cameron Browne at Maastricht University's Department of Data Science and Knowledge Engineering.

European Research Council Logo

Owner
Digital Ludeme Project
Account for repositories related to the Ludii general game system, developed for the ERC-funded Digital Ludeme Project.
Digital Ludeme Project
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022