The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Overview

Likelihood-Free Inference in State-Space Models with Unknown Dynamics

This package contains the codes required to run the experiments in the paper. The simulators used for the State-Space Models in the experiments are implemented based on Engine for Likelihood-free Inference (ELFI) models.

Installation

We recommend using an Anaconda environment. To create and activate the conda environment with all dependencies installed, run:

conda create -c conda-forge --name env --file lfi-requirements.txt
conda activate env
pip install -e .
pip install sbi blitz-bayesian-pytorch stable_baselines3

For the GP-SSM and PR-SSM methods, we recommend creating a separate environment, in which one should install tensorflow, and then clone the 'custom_multiouput' branch of the GPflow from https://github.com/ialong/GPflow. Once GPflow is installed, one should clone GPt from https://github.com/ialong/GPt and execute 'experiments/run_gpssms.py', the code will complete 30 repletions of experiments with tractable likelihoods.

Running the experiments

The experiment scripts can be found in the 'experiments/' folder. To run the experiments on one of the considered SSM, one should run the 'run_experiment.py' script with the following arguments (options are in the parentheses): --sim ('lgssm', 'toy', 'sv', 'umap', 'gaze'), --meth ('bnn', 'qehvi', 'blr', 'SNPE', 'SNLE', 'SNRE'), --seed (any seed number), --budget (available simulation budget for each new state), --tasks (number of tasks considered/ moving window size for LMC-BNN, LMC-qEHVI and LMC-BLR methods). For instance:

python3 experiments/run_experiment.py --sim=lgssm --meth=bolfi --seed=0 --budget=2 --tasks=2

The results will be saved in the corresponding folders 'experiments/[sim]/[meth]-w[tasks]-s[budget]/'. To build plots and output the results, one should run 'collect_plots.py' script with specified arguments: --type ('inf' in case of evaluating state inference quality or 'traj' in case of evaluating the generated trajectories), --tasks (the number of tasks used by the methods). For example:

python3 experiments/collect_results.py --type=inf --tasks=2

The plots with experiment results will be stored in 'experiments/plots'.

Implementing custom simulators

The simulators for all experiments can be found in elfi/examples. Example implementations used in the paper are found in gaze_selection.py, umap_tasks.py, LGSSM.py (LG), dynamic_toy_model.py (NN), and stochastic_volatility.py (SV). To create a new SSM, implement a new class that inherits from elfi.DynamicProcess with custom generating function for observations, create_model(), and update_dynamic().

The code for all methods can be found in 'elfi/methods/dynamic_parameter_inference.py' and 'elfi/methods/bo/mogp.py'.

Citation


Owner
Alex Aushev
Alex Aushev
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022