Simple and understandable swin-transformer OCR project

Overview

swin-transformer-ocr

ocr with swin-transformer

Overview

Simple and understandable swin-transformer OCR project. The model in this repository heavily relied on high-level open-source projects like timm and x_transformers. And also you can find that the procedure of training is intuitive thanks to the legibility of pytorch-lightning.

The model in this repository encodes input image to context vector with 'shifted-window` which is a swin-transformer encoding mechanism. And it decodes the vector with a normal auto-regressive transformer.

If you are not familiar with transformer OCR structure, transformer-ocr would be easier to understand because it uses a traditional convolution network (ResNet-v2) for the encoder.

Performance

With private korean handwritten text dataset, the accuracy(exact match) is 97.6%.

Data

./dataset/
├─ preprocessed_image/
│  ├─ cropped_image_0.jpg
│  ├─ cropped_image_1.jpg
│  ├─ ...
├─ train.txt
└─ val.txt

# in train.txt
cropped_image_0.jpg\tHello World.
cropped_image_1.jpg\tvision-transformer-ocr
...

You should preprocess the data first. Crop the image by word or sentence level area. Put all image data in a specific directory. Ground truth information should be provided with a txt file. In the txt file, write the image file name and label with \t separator in the same line.

Configuration

In settings/ directory, you can find default.yaml. You can set almost every hyper-parameter in that file. Copy one and edit it as your experiment version. I recommend you to run with the default setting first, before you change it.

Train

python run.py --version 0 --setting settings/default.yaml --num_workers 16 --batch_size 128

You can check your training log with tensorboard.

tensorboard --log_dir tb_logs --bind_all

Predict

When your model finishes training, you can use your model for prediction.

python predict.py --setting <your_setting.yaml> --target <image_or_directory> --tokenizer <your_tokenizer_pkl> --checkpoint <saved_checkpoint>

Exporting to ONNX

You can export your model to ONNX format. It's very easy thanks to pytorch-lightning. See the related pytorch-lightning document.

Citations

@misc{liu-2021,
    title   = {Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
	author  = {Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo},
	year    = {2021},
    eprint  = {2103.14030},
	archivePrefix = {arXiv}
}
Owner
Ha YongWook
On my way up to the shoulders of giants.
Ha YongWook
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023