Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Overview

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding

PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) paper.

Method Description

Distilled Sentence Embedding (DSE) distills knowledge from a finetuned state-of-the-art transformer model (BERT) to create high quality sentence embeddings. For a complete description, as well as implementation details and hyperparameters, please refer to the paper.

Usage

Follow the instructions below in order to run the training procedure of the Distilled Sentence Embedding (DSE) method. The python scripts below can be run with the -h parameter to get more information.

1. Install Requirements

Tested with Python 3.6+.

pip install -r requirements.txt

2. Download GLUE Datasets

Run the download_glue_data.py script to download the GLUE datasets.

python download_glue_data.py

3. Finetune BERT on a Specific Task

Finetune a standard BERT model on a specific task (e.g., MRPC, MNLI, etc.). Below is an example for the MRPC dataset.

python finetune_bert.py \
--bert_model bert-large-uncased-whole-word-masking \
--task_name mrpc \
--do_train \
--do_eval \
--do_lower_case \
--data_dir glue_data/MRPC \
--max_seq_length 128 \
--train_batch_size 32 \
--gradient_accumulation_steps 2 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir outputs/large_uncased_finetuned_mrpc \
--overwrite_output_dir \
--no_parallel

Note: For our code to work with the AllNLI dataset (a combination of the MNLI and SNLI datasets), you simply need to create a folder where the downloaded GLUE datasets are and copy the MNLI and SNLI datasets into it.

4. Create Logits for Distillation from the Finetuned BERT

Execute the following command to create the logits which will be used for the distillation training objective. Note that the bert_checkpoint_dir parameter has to match the output_dir from the previous command.

python run_distillation_logits_creator.py \
--task_name mrpc \
--data_dir glue_data/MRPC \
--do_lower_case \
--train_features_path glue_data/MRPC/train_bert-large-uncased-whole-word-masking_128_mrpc \
--bert_checkpoint_dir outputs/large_uncased_finetuned_mrpc

5. Train the DSE Model using the Finetuned BERT Logits

Train the DSE model using the extracted logits. Notice that the distillation_logits_path parameter needs to be changed according to the task.

python dse_train_runner.py \
--task_name mrpc \
--data_dir glue_data/MRPC \
--distillation_logits_path outputs/logits/large_uncased_finetuned_mrpc_logits.pt \
--do_lower_case \
--file_log \
--epochs 8 \
--store_checkpoints \
--fc_dims 512 1

Important Notes:

  • To store checkpoints for the model make sure that the --store_checkpoints flag is passed as shown above.
  • The fc_dims parameter accepts a list of space separated integers, and is the dimensions of the fully connected classifier that is put on top of the extracted features from the Siamese DSE model. The output dimension (in this case 1) needs to be changed according to the wanted output dimensionality. For example, for the MNLI dataset the fc_dims parameter should be 512 3 since it is a 3 class classification task.

6. Loading the Trained DSE Model

During training, checkpoints of the Trainer object which contains the model will be saved. You can load these checkpoints and extract the model state dictionary from them. Then you can load the state into a created DSESiameseClassifier model. The load_dse_checkpoint_example.py script contains an example of how to do that.

To load the model trained with the example commands above you can use:

python load_dse_checkpoint_example.py \
--task_name mrpc \
--trainer_checkpoint <path_to_saved_checkpoint> \
--do_lower_case \
--fc_dims 512 1

Acknowledgments

Citation

If you find this code useful, please cite the following paper:

@inproceedings{barkan2020scalable,
  title={Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding},
  author={Barkan, Oren and Razin, Noam and Malkiel, Itzik and Katz, Ori and Caciularu, Avi and Koenigstein, Noam},
  booktitle={AAAI Conference on Artificial Intelligence (AAAI)},
  year={2020}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022