Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

Overview

A Shared Representation for Photorealistic Driving Simulators

The official code for the paper: "A Shared Representation for Photorealistic Driving Simulators" , paper, arXiv

A Shared Representation for Photorealistic Driving Simulators
Saeed Saadatnejad, Siyuan Li, Taylor Mordan, Alexandre Alahi, 2021. A powerful simulator highly decreases the need for real-world tests when training and evaluating autonomous vehicles. Data-driven simulators flourished with the recent advancement of conditional Generative Adversarial Networks (cGANs), providing high-fidelity images. The main challenge is synthesizing photo-realistic images while following given constraints. In this work, we propose to improve the quality of generated images by rethinking the discriminator architecture. The focus is on the class of problems where images are generated given semantic inputs, such as scene segmentation maps or human body poses. We build on successful cGAN models to propose a new semantically-aware discriminator that better guides the generator. We aim to learn a shared latent representation that encodes enough information to jointly do semantic segmentation, content reconstruction, along with a coarse-to-fine grained adversarial reasoning. The achieved improvements are generic and simple enough to be applied to any architecture of conditional image synthesis. We demonstrate the strength of our method on the scene, building, and human synthesis tasks across three different datasets.

Example

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

  1. Clone this repo.
git clone https://github.com/vita-epfl/SemDisc.git
cd ./SemDisc

Prerequisites

  1. Please install dependencies by
pip install -r requirements.txt

Dataset Preparation

  1. The cityscapes dataset can be downloaded from here: cityscapes

For the experiment, you will need to download [gtFine_trainvaltest.zip] and [leftImg8bit_trainvaltest.zip] and unzip them.

Training

After preparing all necessary environments and the dataset, activate your environment and start to train the network.

Training with the semantic-aware discriminator

The training is doen in two steps. First, the network is trained without only the adversarial head of D:

python train.py --name spade_semdisc --dataset_mode cityscapes --netG spade --c2f_sem_rec --normalize_smaps \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--lambda_seg 1 --lambda_rec 1 --lambda_GAN 35 --lambda_feat 10 --lambda_vgg 10 --fine_grained_scale 0.05 \
--niter_decay 0 --niter 100 \
--aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

After the network is trained for some epochs, we finetune it with the complete D:

python train.py --name spade_semdisc --dataset_mode cityscapes --netG spade --c2f_sem_rec --normalize_smaps \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--lambda_seg 1 --lambda_rec 1 --lambda_GAN 35 --lambda_feat 10 --lambda_vgg 10 --fine_grained_scale 0.05 \
--niter_decay 100 --niter 100 --continue_train --active_GSeg \
--aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

You can change netG to different options [spade, asapnets, pix2pixhd].

Training with original discriminator

The original model can be trained with the following command for comparison.

python train.py --name spade_orig --dataset_mode cityscapes --netG spade \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--niter_decay 100 --niter 100 --aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

Similarly, you can change netG to different options [spade, asapnets, pix2pixhd].

For now, only training on GPU is supported. In case of lack of space, try decreasing the batch size.

Test

Tests - image synthesis

After you have the trained networks, run the test as follows to get the synthesized images for both original and semdisc models

python test.py --name $name --dataset_mode cityscapes \
--checkpoints_dir <checkpoints path> --dataroot <data path> --results_dir ./results/ \
--which_epoch latest --aspect_ratio 1 --load_size 256 --crop_size 256 \
--netG spade --how_many 496

Tests - FID

For reporting FID scores, we leveraged fid-pytorch. To compute the score between two sets:

python fid/pytorch-fid/fid_score.py <GT_image path> <synthesized_image path> >> results/fid_$name.txt

Tests - segmentation

For reporting the segmentation scores, we used DRN. The pre-trained model (and some other details) can be found on this page. Follow the instructions on the DRN github page to setup Cityscapes.

You should have a main folder containing the drn/ folder (from github), the model .pth, the info.json, the val_images.txt and val_labels.txt, a 'labels' folder with the *_trainIds.png images, and a 'synthesized_image' folder with your *_leftImg8bit.png images.

The info.json is from the github, the val_images.txt and val_labels.txt can be obtained with the commands:

find labels/ -maxdepth 3 -name "*_trainIds.png" | sort > val_labels.txt
find synthesized_image/ -maxdepth 3 -name "*_leftImg8bit.png" | sort > val_images.txt

You also need to resize the label images to that size. You can do it with the convert command:

convert -sample 512X256\! "<Cityscapes val>/frankfurt/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"
convert -sample 512X256\! "<Cityscapes val>/lindau/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"
convert -sample 512X256\! "<Cityscapes val>/munster/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"

and the output of the models:

convert -sample 512X256\! "<Cityscapes test results path>/test_latest/images/synthesized_image/*.png" -set filename:base "%[base]" "synthesized_image/%[filename:base].png"

Then I run the model with:

cd drn/
python3 segment.py test -d ../ -c 19 --arch drn_d_105 --pretrained ../drn-d-105_ms_cityscapes.pth --phase val --batch-size 1 --ms >> ./results/seg_$name.txt

Acknowledgments

The base of the code is borrowed from SPADE. Please refer to SPADE to see the details.

Citation

@article{saadatnejad2021semdisc,
  author={Saadatnejad, Saeed and Li, Siyuan and Mordan, Taylor and Alahi, Alexandre},
  journal={IEEE Transactions on Intelligent Transportation Systems}, 
  title={A Shared Representation for Photorealistic Driving Simulators}, 
  year={2021},
  doi={10.1109/TITS.2021.3131303}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022