Convolutional Neural Network for 3D meshes in PyTorch

Overview




MeshCNN in PyTorch

SIGGRAPH 2019 [Paper] [Project Page]

MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used for tasks such as 3D shape classification or segmentation. This framework includes convolution, pooling and unpooling layers which are applied directly on the mesh edges.


The code was written by Rana Hanocka and Amir Hertz with support from Noa Fish.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/ranahanocka/MeshCNN.git
cd MeshCNN
  • Install dependencies: PyTorch version 1.2. Optional : tensorboardX for training plots.
    • Via new conda environment conda env create -f environment.yml (creates an environment called meshcnn)

3D Shape Classification on SHREC

Download the dataset

bash ./scripts/shrec/get_data.sh

Run training (if using conda env first activate env e.g. source activate meshcnn)

bash ./scripts/shrec/train.sh

To view the training loss plots, in another terminal run tensorboard --logdir runs and click http://localhost:6006.

Run test and export the intermediate pooled meshes:

bash ./scripts/shrec/test.sh

Visualize the network-learned edge collapses:

bash ./scripts/shrec/view.sh

An example of collapses for a mesh:

Note, you can also get pre-trained weights using bash ./scripts/shrec/get_pretrained.sh.

In order to use the pre-trained weights, run train.sh which will compute and save the mean / standard deviation of the training data.

3D Shape Segmentation on Humans

The same as above, to download the dataset / run train / get pretrained / run test / view

bash ./scripts/human_seg/get_data.sh
bash ./scripts/human_seg/train.sh
bash ./scripts/human_seg/get_pretrained.sh
bash ./scripts/human_seg/test.sh
bash ./scripts/human_seg/view.sh

Some segmentation result examples:

Additional Datasets

The same scripts also exist for COSEG segmentation in scripts/coseg_seg and cubes classification in scripts/cubes.

More Info

Check out the MeshCNN wiki for more details. Specifically, see info on segmentation and data processing.

Citation

If you find this code useful, please consider citing our paper

@article{hanocka2019meshcnn,
  title={MeshCNN: A Network with an Edge},
  author={Hanocka, Rana and Hertz, Amir and Fish, Noa and Giryes, Raja and Fleishman, Shachar and Cohen-Or, Daniel},
  journal={ACM Transactions on Graphics (TOG)},
  volume={38},
  number={4},
  pages = {90:1--90:12},
  year={2019},
  publisher={ACM}
}

Questions / Issues

If you have questions or issues running this code, please open an issue so we can know to fix it.

Acknowledgments

This code design was adopted from pytorch-CycleGAN-and-pix2pix.

Owner
Rana Hanocka
Research in Deep Learning and Computer Graphics
Rana Hanocka
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
2 Jul 19, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023