This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

Related tags

Deep LearningSeerNet
Overview

SeerNet

​ This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is in submission to TPAMI. This repo contains active sampling for training the performance predictor, optimizing the compression policy and finetuning on two datasets(VGG-small, ResNet20 on Cifar-10; ResNet18, MobileNetv2, ResNet50 on ImageNet) using our proposed SeerNet.

​ As for the entire pipeline, we firstly get a few random samples to pretrain the MLP predictor. After getting the pretrained predictor, we execute active sampling using evolution search to get samples, which are used to further optimize the predictor above. Then we search for optimal compression policy under given constraint utilizing the predictor. Finally, we finetune the policy until convergence.

Quick Start

Prerequisites

  • python>=3.5
  • pytorch>=1.1.0
  • torchvision>=0.3.0
  • other packages like numpy and sklearn

Dataset

If you already have the ImageNet dataset for pytorch, you could create a link to data folder and use it:

# prepare dataset, change the path to your own
ln -s /path/to/imagenet/ data/

If you don't have the ImageNet, you can use the following script to download it: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

Active Sampling

You can run the following command to actively search the samples by evolution algorithm:

CUDA_VISIBLE_DEVICES=0 python PGD/search.py --sample_path=results/res18/resnet18_sample.npy --acc_path=results/res18/resnet18_acc.npy --lr=0.2 --batch=400 --epoch=1000 --save_path=search_result.npy --dim=57

Training performance predictor

You can run the following command to training the MLP predictor:

CUDA_VISIBLE_DEVICES=0 python PGD/regression/regression.py --sample_path=../results/res18/resnet18_sample.npy --acc_path=../results/res18/resnet18_acc.npy --lr=0.2 --batch=400 --epoch=5000 --dim=57

Compression Policy Optimization

After training the performance predictor, you can run the following command to optimize the compression policy:


# for resnet18, please use
python PGD/pgd_search.py --arch qresnet18 --layer_nums 19 --step_size 0.005 --max_bops 30 --pretrained_weight path\to\weight 


# for mobilenetv2, please use
python PGD/pgd_search.py --arch qmobilenetv2 --layer_nums 53 --step_size 0.005 --max_bops 8 --pretrained_weight path\to\weight 


# for resnet50, please use
python PGD/pgd_search.py --arch qresnet50 --layer_nums 52 --step_size 0.005 --max_bops 65 --pretrained_weight path\to\weight 

Finetune Policy

After optimizing, you can get the optimal quantization and pruning strategy list, and you can replace the strategy list in finetune_imagenet.py to finetune and evaluate the performance on ImageNet dataset. You can also use the default strategy to reproduce the results in our paper.

For finetuning ResNet18 on ImageNet, please run:

bash run/finetune_resnet18.sh

For finetuning MobileNetv2 on ImageNet, please run:

bash run/finetune_mobilenetv2.sh

For finetuning ResNet50 on ImageNet, please run:

bash run/finetune_resnet50.sh
Owner
IVG Lab, Department of Automation, Tsinghua Univeristy
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022