Official page of Patchwork (RA-L'21 w/ IROS'21)

Overview

Patchwork

Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor", which is accepted by RA-L with IROS'21 option

[Video] [Preprint Paper] [Project Wiki]

Patchwork Concept of our method (CZM & GLE)

It's an overall updated version of R-GPF of ERASOR [Code] [Paper].


Demo

KITTI 00

Rough Terrain


Characteristics

  • Single hpp file (include/patchwork/patchwork.hpp)

  • Robust ground consistency

As shown in the demo videos and below figure, our method shows the most promising robust performance compared with other state-of-the-art methods, especially, our method focuses on the little perturbation of precision/recall as shown in this figure.

Please kindly note that the concept of traversable area and ground is quite different! Please refer to our paper.

Contents

  1. Test Env.
  2. Requirements
  3. How to Run Patchwork
  4. Citation

Test Env.

The code is tested successfully at

  • Linux 18.04 LTS
  • ROS Melodic

Requirements

ROS Setting

    1. Install ROS on a machine.
    1. Thereafter, jsk-visualization is required to visualize Ground Likelihood Estimation status.
sudo apt-get install ros-melodic-jsk-recognition
sudo apt-get install ros-melodic-jsk-common-msgs
sudo apt-get install ros-melodic-jsk-rviz-plugins
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
git clone https://github.com/LimHyungTae/patchwork.git
cd .. && catkin build patchwork 

How to Run Patchwork

We provide three examples

  • Offline KITTI dataset
  • Online (ROS Callback) KITTI dataset
  • Own dataset using pcd files

Offline KITTI dataset

  1. Download SemanticKITTI Odometry dataset (We also need labels since we also open the evaluation code! :)

  2. Set the data_path in launch/offline_kitti.launch for your machine.

The data_path consists of velodyne folder and labels folder as follows:

data_path (e.g. 00, 01, ..., or 10)
_____velodyne
     |___000000.bin
     |___000001.bin
     |___000002.bin
     |...
_____labels
     |___000000.label
     |___000001.label
     |___000002.label
     |...
_____...
   
  1. Run launch file
roslaunch patchwork offline_kitti.launch

You can directly feel the speed of Patchwork! 😉

Online (ROS Callback) KITTI dataset

We also provide rosbag example. If you run our patchwork via rosbag, please refer to this example.

  1. Download readymade rosbag
wget https://urserver.kaist.ac.kr/publicdata/patchwork/kitti_00_xyzilid.bag
  1. After building this package, run the roslaunch as follows:
roslaunch patchwork rosbag_kitti.launch
  1. Then play the rosbag file in another command
rosbag play kitti_00_xyzilid.bag

Own dataset using pcd files

Please refer to /nodes/offilne_own_data.cpp.

(Note that in your own data format, there may not exist ground truth labels!)

Be sure to set right params. Otherwise, your results may be wrong as follows:

W/ wrong params After setting right params

For better understanding of the parameters of Patchwork, please read our wiki, 4. IMPORTANT: Setting Parameters of Patchwork in Your Own Env..

Offline (Using *.pcd or *.bin file)

  1. Utilize /nodes/offilne_own_data.cpp

  2. Please check the output by following command and corresponding files:

roslaunch patchwork offline_ouster128.launch

Online (via rosbag)

  1. Utilize rosbag_kitti.launch.

  2. To do so, remap the topic of subscriber, e.g. add remap line as follows:

<remap from="/node" to="$YOUR_LIDAR_TOPIC_NAME$"/>
  1. In addition, minor modification of ros_kitti.cpp is necessary by refering to offline_own_data.cpp.

Citation

If you use our code or method in your work, please consider citing the following:

@article{lim2021patchwork,
title={Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor},
author={Lim, Hyungtae and Minho, Oh and Myung, Hyun},
journal={IEEE Robotics and Automation Letters},
year={2021}
}

Description

All explanations of parameters and other experimental results will be uploaded in wiki

Contact

If you have any questions, please let me know:

TODO List

  • Add ROS support
  • Add preprint paper
  • Add demo videos
  • Add own dataset examples
  • Update wiki

Owner
Hyungtae Lim
Ph.D Candidate of URL lab. @ KAIST, South Korea
Hyungtae Lim
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022