Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Overview

Implicit Internal Video Inpainting

Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

paper | project website | 4K data | demo video

Introduction

Want to remove objects from a video without days of training and thousands of training videos? Try our simple but effective internal video inpainting method. The inpainting process is zero-shot and implicit, which does not need any pretraining on large datasets or optical-flow estimation. We further extend the proposed method to more challenging tasks: video object removal with limited annotated masks, and inpainting on ultra high-resolution videos (e.g., 4K videos).

TO DO

  • Release code for 4K video inpainting

Setup

Installation

git clone https://github.com/Tengfei-Wang/Implicit-Internal-Video-Inpainting.git
cd Implicit-Internal-Video-Inpainting

Environment

This code is based on tensorflow 2.x (tested on tensorflow 2.2, 2.4).

The environment can be simply set up by Anaconda:

conda create -n IIVI python=3.7
conda activate IIVI
conda install tensorflow-gpu tensorboard
pip install pyaml 
pip install opencv-python
pip install tensorflow-addons

Or, you can also set up the environment from the provided environment.yml:

conda env create -f environment.yml
conda activate IIVI

Usage

Quick Start

We provide an example sequence 'bmx-trees' in ./inputs/ . To try our method:

python train.py

The default iterations is set to 50,000 in config/train.yml, and the internal learning takes ~4 hours with a single GPU. During the learning process, you can use tensorboard to check the inpainting results by:

tensorboard --logdir ./exp/logs

After the training, the final results can be saved in ./exp/results/ by:

python test.py

You can also modify 'model_restore' in config/test.yml to save results with different checkpoints.

Try Your Own Data

Data preprocess

Before training, we advise to dilate the object masks first to exclude some edge pixels. Otherwise, the imperfectly-annotated masks would lead to artifacts in the object removal task.

You can generate and preprocess the masks by this script:

python scripts/preprocess_mask.py --annotation_path inputs/annotations/bmx-trees

Basic training

Modify the config/train.yml, which indicates the video path, log path, and training iterations,etc.. The training iterations depends on the video length, and it typically takes 30,000 ~ 80,000 iterations for convergence for 100-frame videos. By default, we only use reconstruction loss for training, and it works well for most cases.

python train.py

Improve the sharpness and consistency

For some hard videos, the former training may not produce a pleasing result. You can fine-tune the trained model with another losses. To this end, modify the 'model_restore' in config/test.yml to the checkpoint path of basic training. Also set ambiguity_loss or stabilization_loss to True. Then fine-tune the basic checkpoint for 20,000-40,000 iterations.

python train.py

Inference

Modify the ./config/test.yml, which indicates the video path, log path, and save path.

python test.py

Mask Propagation from A Single Frame

When you only annotate the object mask of one frame (or few frames), our method can propagate it to other frames automatically.

Modify ./config/train_mask.yml. We typically set the training iterations to 4,000 ~ 20,000, and the learning rate to 1e-5 ~ 1e-4.

python train_mask.py

After training, modify ./config/test_mask.yml, and then:

python test_mask.py

High-resolution Video Inpainting

Our 4K videos and mask annotations can be downloaded in 4K data.

More Results

Our results on 70 DAVIS videos (including failure cases) can be found here for your reference :)
If you need the PNG version of our uncompressed results, please contact the authors.

Citation

If you find this work useful for your research, please cite:

@inproceedings{ouyang2021video,
  title={Internal Video Inpainting by Implicit Long-range Propagation},
  author={Ouyang, Hao and Wang, Tengfei and Chen, Qifeng},
  booktitle={International Conference on Computer Vision (ICCV) },
  year={2021}
} 

If you are also interested in the image inpainting or internal learning, this paper can be also helpful :)

@inproceedings{wang2021image,
  title={Image Inpainting with External-internal Learning and Monochromic Bottleneck},
  author={Wang, Tengfei and Ouyang, Hao and Chen, Qifeng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5120--5129},
  year={2021}
}

Contact

Please send emails to Hao Ouyang or Tengfei Wang if there is any question

PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022