[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

Overview

ASSL

This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR), introduced in our NeurIPS 2021 Spotlight paper:

Aligned Structured Sparsity Learning for Efficient Image Super-Resolution [Camera Ready]
Yulun Zhang*, Huan Wang*, Can Qin, and Yun Fu (*Contribute Equally)
Northeastern University, Boston, MA, USA

Stay tuned!

You might also like...
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

PyTorch code for our ECCV 2018 paper
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Comments
  • Could you share the code with me?

    Could you share the code with me?

    @MingSun-Tse Thanks for your excellent work. I read the paper ,and I want to learn the details. Could you share the paper with me? Thank you very much!!

    opened by ciwei123 3
  • Why simply use the first constrained layer as pruning template for all constrained layers?

    Why simply use the first constrained layer as pruning template for all constrained layers?

    From the observation of training results, the hard mask's weights between the constrained layers are not exactly aligned. https://github.com/MingSun-Tse/ASSL/blob/a564556c8b578c2ee86d135044f088bfeaafc707/src/pruner/utils.py#L71

    opened by yumath 2
  • Questions about implementation detail

    Questions about implementation detail

    hello , I have some questiones about implementation details.

    Data are obtained using the HR-LR data pairs obtained by the down-sampling code provided in BasicSR. The training data was DF2K (900 DIV2K + 2650 Flickr2K), and the test data was Set5.

    I run this command to prune the EDSR_16_256 model to EDSR_16_48. Only the pruning ratio and storage path name are modified compared to the command provided by the official.

    Prune from 256 to 48, pr=0.8125, x2, ASSL

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method ASSL --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_ASSL_0.8125_RGP0.0001_RUL0.5_Pretrain_06011101 Results model_just_finished_prune ---> 33.739dB fine-tuning after one epoch ---> 37.781dB fine-tuning after 756 epoch ---> 37.940dB

    The result (37.940dB) I obtained with the code provided by the official is still a certain gap from the result in the paper (38.12dB). I should have overlooked some details.

    I also compared L1-norm method provided in the code. Prune from 256 to 48, pr=0.8125, x2, L1

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method L1 --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_L1_0.8125_06011101

    Results

    model_just_finished_prune ---> 13.427dB fine-tuning after one epoch ---> 33.202dB fine-tuning after 756 epoch ---> 37.933dB

    The difference between the results of L1-norm method and those of ASSL seems negligible at this pruning ratio (256->48)

    Is there something I missed? Looking forward to your reply! >-<

    opened by wurongyuan 2
  • Questions on Data Preparation

    Questions on Data Preparation

    Hello and thanks for your amazing work! When I try to reproduce the paper results, I met some trouble binarizing the DF2K data:

    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3548x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3549x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3550x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_HR/3551.pt does not exist. Now making binary...
    Traceback (most recent call last):
    ...
    FileNotFoundError: No such file: '/home/nfs_data/shixiangsheng/projects/ModelCompression/Prune/ASSL/src/data/DF2K/DF2K_train_HR/3551.png'
    

    I created dirs like this: ----data |__DF2K |__DF2K_train_HR |__DF2K_train_LR_bicubic

    I put '0001.png' - '0900.png' from ./data/DIV2K/DIV2K_train_HR and '000001.png' - '002650.png' (renamed to '0901.png' - '3550.png') from .data/Flickr2K/Flickr2K_HR to ./DF2K/DF2K_train_HR. As for downsampled images, I created folders named in ['X2', 'X3', 'X4'] under ./DF2K/DF2K_train_LR_bicubic and copied related images from DIV2K_train_LR_bicubic and Flickr2K_LR_bicubic (with images renamed as '0001x_.png' to '3550x_.png'). At the first and second stages of binarization (binarizing HR images and X4 LR images), it seems OK, but then the above error emerged. It's kind of weird since the total training images are 900 + 2650 and I have no idea why it returned to binarize the HR images after binarizing X4 LR images. I'm new to SR and have tried to look up for data preparation of DF2K in other SR repos, but in vain. I wonder how you actually get DF2K images binarized. Thanks for your help in advance XD

    opened by YouCaiJun98 0
Releases(v0.1)
Owner
Huan Wang
B.E. and M.S. graduate from Zhejiang University, China. Now Ph.D. candidate at Northeastern, USA. I work on interpretable model compression and daydreaming.
Huan Wang
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022