Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

Overview

SW-CV-ModelZoo

Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset


Framework: TF/Keras 2.7

Training SQLite DB built using fire-egg's tools: https://github.com/fire-eggs/Danbooru2019

Currently training on Danbooru2021, 512px SFW subset (sans the rating:q images that had been included in the 2022-01-21 release of the dataset)

Reference:

Anonymous, The Danbooru Community, & Gwern Branwen; “Danbooru2021: A Large-Scale Crowdsourced and Tagged Anime Illustration Dataset”, 2022-01-21. Web. Accessed 2022-01-28 https://www.gwern.net/Danbooru2021


Journal

06/02/2022: great news crew! TRC allowed me to use a bunch of TPUs!

To make better use of this amount of compute I had to overhaul a number of components, so a bunch of things are likely to have fallen to bitrot in the process. I can only guarantee NFNet can work pretty much as before with the right arguments.
NFResNet changes should have left it retrocompatible with the previous version.
ResNet has been streamlined to be mostly in line with the Bag-of-Tricks paper (arXiv:1812.01187) with the exception of the stem. It is not compatible with the previous version of the code.

The training labels have been included in the 2021_0000_0899 folder for convenience.
The list of files used for training is going to be uploaded as a GitHub Release.

Now for some numbers:
compared to my previous best run, the one that resulted in NFNetL1V1-100-0.57141:

  • I'm using 1.86x the amount of images: 2.8M vs 1.5M
  • I'm training bigger models: 61M vs 45M params
  • ... in less time: 232 vs 700 hours of processor time
  • don't get me started on actual wall clock time
  • with a few amenities thrown in: ECA for channel attention, SiLU activation

And it's all thanks to the folks at TRC, so shout out to them!

I currently have a few runs in progress across a couple of dimensions:

  • effect of model size with NFNet L0/L1/L2, with SiLU and ECA for all three of them
  • effect of activation function with NFNet L0, with SiLU/HSwish/ReLU, no ECA

Once the experiments are over, the plan is to select the network definitions that lay on the Pareto curve between throughput and F1 score and release the trained weights.

One last thing.
I'd like to call your attention to the tools/cleanlab_stuff.py script.
It reads two files: one with the binarized labels from the database, the other with the predicted probabilities.
It then uses the cleanlab package to estimate whether if an image in a set could be missing a given label. At the end it stores its conclusions in a json file.
This file could, potentially, be used in some tool to assist human intervention to add the missing tags.

You might also like...
Human head pose estimation using Keras over TensorFlow.
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Hyperparameter Optimization for TensorFlow, Keras and PyTorch
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Releases(models_db2021_5500_2022_10_21)
  • models_db2021_5500_2022_10_21(Oct 21, 2022)

    ConvNext B, ViT B16
    Trained on Danbooru2021 512px SFW subset, modulos 0000-0899
    top 5500 tags (2021_0000_0899_5500/selected_tags.csv)
    alpha to white
    padding to make the image square is white
    channel order is BGR, input is 0...255, scaled to -1...1 within the model

    | run_name | definition_name | params_human | image_size | thres | F1 | |:---------------------------------|:------------------|:---------------|-------------:|--------:|-------:| | ConvNextBV1_09_25_2022_05h13m55s | B | 93.2M | 448 | 0.3673 | 0.6941 | | ViTB16_09_25_2022_04h53m38s | B16 | 90.5M | 448 | 0.3663 | 0.6918 |

    Source code(tar.gz)
    Source code(zip)
    ConvNextBV1_09_25_2022_05h13m55s.7z(322.58 MB)
    ViTB16_09_25_2022_04h53m38s.7z(312.96 MB)
  • convnexts_db2021_2022_03_22(Mar 22, 2022)

    ConvNext, T/S/B
    Trained on Danbooru2021 512px SFW subset, modulos 0000-0899
    alpha to white
    padding to make the image square is white
    channel order is BGR, input is 0...255, scaled to -1...1 within the model

    | run_name | definition_name | params_human | image_size | thres | F1 | |:---------------------------------|:------------------|:---------------|-------------:|--------:|-------:| | ConvNextBV1_03_10_2022_21h41m23s | B | 90.01M | 448 | 0.3372 | 0.6892 | | ConvNextSV1_03_11_2022_17h49m56s | S | 51.28M | 384 | 0.3301 | 0.6798 | | ConvNextTV1_03_05_2022_15h56m42s | T | 29.65M | 320 | 0.3259 | 0.6595 |

    Source code(tar.gz)
    Source code(zip)
    ConvNextBV1_03_10_2022_21h41m23s.7z(311.29 MB)
    ConvNextSV1_03_11_2022_17h49m56s.7z(177.36 MB)
    ConvNextTV1_03_05_2022_15h56m42s.7z(102.96 MB)
  • nfnets_db2021_2022_03_04(Mar 4, 2022)

    NFNet, L0/L1/L2 (based on timm Lx model definitions) Trained on Danbooru2021 512px SFW subset, modulos 0000-0899 alpha to white padding to make the image square is white channel order is BGR, input is 0...255, scaled to -1...1 within the model

    | run_name | definition_name | params_human | image_size | thres | F1 | |:---------------------------------|:------------------|:---------------|-------------:|--------:|-------:| | NFNetL2V1_02_20_2022_10h27m08s | L2 | 60.96M | 448 | 0.3231 | 0.6785 | | NFNetL1V1_02_17_2022_20h18m38s | L1 | 45.65M | 384 | 0.3259 | 0.6691 | | NFNetL0V1_02_10_2022_17h50m14s | L0 | 27.32M | 320 | 0.3190 | 0.6509 |

    Source code(tar.gz)
    Source code(zip)
    NFNetL0V1_02_10_2022_17h50m14s.7z(94.98 MB)
    NFNetL1V1_02_17_2022_20h18m38s.7z(157.97 MB)
    NFNetL2V1_02_20_2022_10h27m08s.7z(210.49 MB)
  • nfnet_tpu_training(Feb 6, 2022)

  • NFNetL1V1-100-0.57141(Dec 31, 2021)

    • NFNet, L1 (based on timm Lx model definitions), 100 epochs, F1 @ 0.4 at the end of the 100th epoch was 0.57141
    • Trained on Danbooru2020 512px SFW subset, modulos 0000-0599
    • 320px per side
    • alpha to white
    • padding to make the image square is white
    • channel order is BGR, scaled to 0-1
    • mixup alpha = 0.2 during epochs 76-100
    • analyze_metrics on Danbooru2020 original set, modulos 0984-0999: {'thres': 0.3485, 'F1': 0.6133, 'F2': 0.6133, 'MCC': 0.6094, 'A': 0.9923, 'R': 0.6133, 'P': 0.6133}
    • analyze_metrics on image IDs 4970000-5000000: {'thres': 0.3148, 'F1': 0.5942, 'F2': 0.5941, 'MCC': 0.5892, 'A': 0.9901, 'R': 0.5940, 'P': 0.5943}
    Source code(tar.gz)
    Source code(zip)
    NFNetL1V1-100-0.57141.7z(158.09 MB)
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022